A laser-irradiated surface is the paradigm of a self-organizing system, as coherent, aligned, chaotic, and complex patterns emerge at the microscale and even the nanoscale. A spectacular manifestation of dissipative structures consists of different types of randomly and periodically distributed nanostructures that arise from a homogeneous metal surface. The noninstantaneous response of the material reorganizes local surface topography down to tens of nanometers scale modifying long-range surface morphology on the impact scale. Under ultrafast laser irradiation with a regulated energy dose, the formation of nanopeaks, nanobumps, nanohumps and nanocavities patterns with 20–80 nm transverse size unit and up to 100 nm height are reported. We show that the use of crossed-polarized double laser pulse adds an extra dimension to the nanostructuring process as laser energy dose and multi-pulse feedback tune the energy gradient distribution, crossing critical values for surface self-organization regimes. The tiny dimensions of complex patterns are defined by the competition between the evolution of transient liquid structures generated in a cavitation process and the rapid resolidification of the surface region. Strongly influencing the light coupling, we reveal that initial surface roughness and type of roughness both play a crucial role in controlling the transient emergence of nanostructures during laser irradiation.
Confocal chromatic microscopy is an optical technique allowing measuring displacement, thickness, and roughness with a sub-micrometric precision. Its operation principle is based on a wavelength encoding of the object position. Historically, the company STIL based in the south of France has first developed this class of sensors in the 90’s. Of course, this sensor can only operate in a sufficiently transparent medium in the used spectral domain. It presents the advantage of being contactless, which is a crucial advantage for some applications such as the fuel rod displacement measurement in a nuclear research reactor core and in particular for cladding-swelling measurements. The extreme environmental conditions encountered in such experiments i.e. high temperature, high pressure, high radiations flux, strong vibrations, surrounding turbulent flow can affect the performances of this optical system. We then need to implement mitigation techniques to optimize the sensor performance in this specific environment. Another constraint concerns the small volume available in the irradiation rig next to the rod to monitor, implying the challenge to conceive a miniaturized sensor able to operate under these constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.