Chronic bilateral subthalamic stimulation leads to a spectacular clinical improvement in patients with motor complications. However, the post-operative body weight gain involved may limit the benefits of surgery and induce critical metabolic disorders. Twenty-four Parkinsonians (61.1 +/- 1.4 years) were examined 1 month before (M - 1) and 3 months after (M + 3) surgery. Body composition and energy expenditure (EE) were measured (1) over 36 h in calorimetric chambers (CC) with rigorous control of food intakes and activities [sleep metabolic rate, resting activities, meals, 3 or 4 sessions of 20 min on a training bicycle at 13 km/h and daily EE] and (2) in resting conditions (basal metabolic rate) during an acute L-dopa challenge (M - 1) or according to acute 'off' and 'on' stimulation (M + 3). Before surgery, EE was compared between the Parkinsonian patients and healthy subjects matched for height and body composition (metabolic rate during sleep, daily EE) or matched to predicted values (basal metabolic rate). Before surgery, in Parkinsonian men but not women, (1) daily EE was higher while sleep metabolic rate was lower compared to healthy matched men (+9.2 +/- 3.9 and -8.2 +/- 2.3%, respectively, P < 0.05) and (2) basal metabolic rate (L-dopa 'on') was higher than predicted basal metabolic rate (+11.5 +/- 4.0%, P < 0.05) but was further increased without L-dopa (+8.4 +/- 3.2% vs L-dopa 'on', P < 0.05). EE during daily activities was higher during 'off' periods compared to 'on' periods for both men (+19.3 +/- 3.3%, P < 0.0001) and women (+16.1 +/- 4.7%, P < 0.01). After surgery, there was a 3.4 +/- 0.6 kg (P < 0.0001) body weight increase together with fat mass (P < 0.0001) and fat-free mass (P < 0.05) in Parkinsonian men and a 2.6 +/- 0.8 kg (P < 0.05) body weight increase together with fat mass (P < 0.05) in Parkinsonian women. Sleep metabolic rate increased in men (+7.5 +/- 2.0%, P < 0.01) to reach control values but remained unchanged in women. Daily EE decreased significantly in both men and women (-7.3 +/- 2.2% and -13.1 +/- 1.7%, respectively, P < 0.01) but there was no correlation between daily EE changes and body weight gain. Parkinson's disease is associated with profound alterations in the central control of energy metabolism. Normalization of energy metabolism after DBS-STN implantation may favour body weight gain, of which quality was gender specific. As men gained primarily fat-free mass, a reasonable weight gain may be tolerated, in contrast with women who gained only fat. Other factors such as changes in free-living physical activity may help to limit body weight gain in some patients.
Objective: Inadequate intakes of micronutrients in elderly negatively affect the nutritional status. Zinc is an essential micronutrient in the elderly, especially in relation to its impact on immune function, bone mass, cognitive function and oxidative stress. However, data are lacking on zinc intake and status during normal ageing. In this study, we evaluate the intake and status of zinc in late middle-aged and older free-living subjects. Design: Dietary zinc intake and zinc status in 188 middle-aged subjects from Clermont-Ferrand (Fr) and Coleraine (UK), and in 199 older subjects from Grenoble (Fr) and Roma (It) were assessed at the entry in the ZENITH study. Results: In relation to the zinc RDA for people older than 55 y, zinc intakes in most of the middle-aged and older subjects (more than 96%) in the present study were adequate. Older people had significantly lower (Po0.01) energy intakes as compared to middle-aged. Zinc intake expressed per MJ was also significantly (Po0.01) higher in older people compared to middle-aged. Erythrocyte and urinary zinc concentrations were significantly (Po0.001) higher in middle-aged subjects compared to older ones. The prevalence of biological Zn deficiency in free-living ageing European people was low (o5%). Conclusion:The results of the present study showed a relatively low prevalence of zinc deficiencies in healthy free-living late middle-age and older subjects. These results should be useful for health professionals to have reference data on zinc intake and status for a healthy ageing.
Increased postmenopausal bone turnover leads to bone loss and fragility fracture risk. In the absence of osteoporosis, risk preventive measures, particularly those modifying nutritional lifestyle, are appropriate. We tested the hypothesis that milk supplementation affects bone turnover related to biochemical markers in a direction that, in the long term, may be expected to reduce postmenopausal bone loss. Thirty healthy postmenopausal women aged 59·3 (SD 3·3) years were enrolled in a prospective crossover trial of 16 weeks. After a 4-week period of adaptation with diet providing 600 mg calcium plus 300 mg ingested as 250 ml semi-skimmed milk, participants were maintained during 6 weeks under the same 600 mg calcium diet and randomized to receive either 500 ml semi-skimmed milk, thus providing a total of 1200 mg calcium, or no milk supplement. In the next 6 weeks they were switched to the alternative regimen. At the end of the each period, i.e. after 4, 10 and 16 weeks, blood and urinary samples were collected. The changes in blood variables between the periods of 6 weeks without and with milk supplementation were: for parathyroid hormone, 23·2 pg/ml (P¼ 0·0054); for crosslinked telopeptide of type I collagen, 2624 pg/ml (P,0·0001); for propeptide of type I procollagen, 25·5 ng/ml (P¼ 0·0092); for osteocalcin, 2 2·8 ng/ml (P¼0·0014). In conclusion, a 6-week period of milk supplementation induced a decrease in several biochemical variables compatible with diminished bone turnover mediated by reduction in parathyroid hormone secretion. This nutritional approach to postmenopausal alteration in bone metabolism may be a valuable measure in the primary prevention of osteoporosis.Menopause: Milk supplementation: Calcium intake: Bone turnover
Background Metabolic syndrome (MetS), a cluster of factors associated with risks of developing cardiovascular diseases, is a public health concern because of its growing prevalence. Considering the combination of concomitant components, their development and severity, MetS phenotypes are largely heterogeneous, inducing disparity in diagnosis. Methods A case/control study was designed within the NuAge longitudinal cohort on aging. From a 3-year follow-up of 123 stable individuals, we present a deep phenotyping approach based on a multiplatform metabolomics and lipidomics untargeted strategy to better characterize metabolic perturbations in MetS and define a comprehensive MetS signature stable over time in older men. Findings We characterize significant changes associated with MetS, involving modulations of 476 metabolites and lipids, and representing 16% of the detected serum metabolome/lipidome. These results revealed a systemic alteration of metabolism, involving various metabolic pathways (urea cycle, amino-acid, sphingo- and glycerophospholipid, and sugar metabolisms…) not only intrinsically interrelated, but also reflecting environmental factors (nutrition, microbiota, physical activity…). Interpretation These findings allowed identifying a comprehensive MetS signature, reduced to 26 metabolites for future translation into clinical applications for better diagnosing MetS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.