Scientists, policy makers, and journalists are three key, interconnected players involved in prioritizing and implementing solutions to mitigate the consequences of anthropogenic pressures on the environment. The way in which information is framed and expertise is communicated by the media is crucial for political decisions and for the integrated management of environmental issues. Here we present a comparative study of scientific literature and press articles addressing climate change and biodiversity. We extensively scrutinized the scientific literature, research funding, and press articles from the USA, Canada, and United Kingdom addressing climate change and biodiversity issues between 1991 and 2016. We found that media coverage of climate change was up to eight times higher compared to biodiversity. This discrepancy could not be explained by different scientific output between the two issues. Moreover, climate change media coverage was often related to specific events whereas no such indication of a connection was found in the case of biodiversity. An international communication strategy is urgently required to raise public awareness on biodiversity issues. We discussed several initiatives that scientists could undertake to better communicate major discoveries to the public and policy makers.
Growth series of Palaeozoic fishes are rare because of the fragility of larval and juvenile specimens owing to their weak mineralisation and the scarcity of articulated specimens. This rarity makes it difficult to describe early vertebrate growth patterns and processes in extinct taxa. Indeed, only a few growth series of complete Palaeozoic fishes are available; however, they allow the growth of isolated elements to be described and individual growth from these isolated elements to be inferred. In addition, isolated and in situ scales are generally abundant and well-preserved, and bring information on (1) their morphology and structure relevant to phylogenetic relationships and (2) individual growth patterns and processes relative to species ontogeny. The Late Devonian acanthodian Triazeugacanthus affinis from the Miguasha Fossil-Lagerstätte preserves one of the best known fossilised ontogenies of early vertebrates because of the exceptional preservation, the large size range, and the abundance of complete specimens. Here, we present morphological, histological, and chemical data on scales from juvenile and adult specimens (scales not being formed in larvae). Histologically, Triazeugacanthus scales are composed of a basal layer of acellular bone housing Sharpey’s fibers, a mid-layer of mesodentine, and a superficial layer of ganoine. Developmentally, scales grow first through concentric addition of mesodentine and bone around a central primordium and then through superposition of ganoine layers. Ontogenetically, scales form first in the region below the dorsal fin spine, then squamation spreads anteriorly and posteriorly, and on fin webs. Phylogenetically, Triazeugacanthus scales show similarities with acanthodians (e.g. “box-in-box” growth), chondrichthyans (e.g. squamation pattern), and actinopterygians (e.g. ganoine). Scale histology and growth are interpreted in the light of a new phylogenetic analysis of gnathostomes supporting acanthodians as stem chondrichthyans.
One of the major events in vertebrate evolution involves the transition from jawless (agnathan) to jawed (gnathostome) vertebrates, including a variety of cranial and postcranial innovations. It has long been assumed that characters such as the pelvic girdles and fins, male intromittent organs independent from the pelvic girdles, as well as a regionalized axial skeleton first appeared in various basal gnathostome groups if not at the origin of gnathostomes. Here we describe the first occurrence of pelvic girdles and intromittent organs in the Late Devonian jawless anaspid‐like fish Euphanerops longaevus Woodward (Miguasha Lagerstätte, eastern Canada), associated with a morphologically differentiated region of the axial skeleton. Morphological differentiation of the axial skeleton is also described for the first time in an extant jawless fish, the sea lamprey Petromyzon marinus Linnaeus. Our data indicate that regionalization of the axial skeleton occurred earlier in vertebrate evolutionary history than previously appreciated. This regionalization is coupled with modifications of the appendicular skeleton in Euphanerops. These new observations combined with a new phylogenetic analysis of early vertebrates provide a more precise understanding of how the appendicular and axial skeletons developed and evolved within vertebrate evolutionary history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.