Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in Wuhan in December 2019 and has since spread across the world. Even though the majority of patients remain completely asymptomatic, some develop severe systemic complications. In this prospective study we compared the immunological profile of 101 COVID-19 patients with either mild, moderate or severe form of the disease according to the WHO classification, as well as of 50 healthy subjects, in order to identify functional immune factors independently associated with severe forms of COVID-19. Plasma cytokine levels, and cytokine levels upon in vitro non-specific stimulation of innate and adaptive immune cells, were measured at several time points during the course of the disease. As described previously, inflammatory cytokines IL1β, IL6, IL8, and TNFα associated with cytokine storm were significantly increased in the plasma of moderate and severe COVID-19 patients (p < 0.0001 for all cytokines). During follow-up, plasma IL6 levels decreased between the moment of admission to the hospital and at the last observation carried forward for patients with favorable outcome (p = 0.02148). After in vitro stimulation of immune cells from COVID-19 patients, reduced levels of both type I and type II interferons (IFNs) upon in vitro stimulation were correlated with increased disease severity [type I IFN (IFNα): p > 0.0001 mild vs. moderate and severe; type II IFN (IFNγ): p = 0.0002 mild vs. moderate and p < 0.0001 mild vs. severe] suggesting a functional exhaustion of IFNs production. Stimulated IFNα levels lower than 2.1 pg/ml and IFNγ levels lower than 15 IU/mL at admission to the hospital were associated with more complications during hospitalization (p = 0.0098 and p =0.0002, respectively). A low IFNγ level was also confirmed by multivariable analysis [p = 0.0349 OR = 0.98 (0.962; 0.999)] as an independent factor of complications. In vitro treatment with type IFNα restored type IFNγ secretion in COVID-19 patients while the secretion of pro-inflammatory cytokines IL6 and IL1β remained stable or decreased, respectively. These results (a) demonstrate a functional exhaustion of both innate and adaptive immune response in severe forms of COVID-19; (b) identify IFNα and IFNγ as new potential biomarkers of severity; and (c) highlight the importance of targeting IFNs when considering COVID-19 treatment in order to re-establish a normal balance between inflammatory and Th1 effector cytokines.
Membranous nephropathy (MN) is a rare autoimmune kidney disease. Most autoimmune diseases are associated with a pro-inflammatory Th17-immune response, but little is known about immune dysregulation in MN. In China, MN was associated with exposure to fine air particulate matter (PM2.5) that could act as a danger signal and redirect immune response toward the Th2 or Th17 pathway. We aimed to analyze the cytokine profile of MN patients and to study the possible environmental factors involved in this immune reorientation, as well as the consequences on the prognosis of the disease. In this prospective study, 59 MN patients filled a comprehensive lifestyle questionnaire. Peripheral blood cells from MN patients were stimulated in vitro to measure the cytokines produced in supernatant. Cytokine profiles of MN patients were compared to 28 healthy donors and analyzed regarding individual PM2.5 exposure. Compared to healthy donors, MN patients had higher serum levels of Th17 and Th2 cytokines IL-17A (62 pg/ml [IQR, 16–160] versus 31 [IQR, 13–51], P=0.035), IL-6 (66767 pg/ml [IQR, 36860–120978] versus 27979 [IQR, 18672–51499], P=0.001), and IL-4 (12 pg/ml [IQR, 0–33] versus 0 pg/ml [IQR, 0–0], P=0.0003), respectively, as well as a deficiency of Th1 and regulatory T cell cytokines IFN-γ (5320 pg/ml [IQR, 501–14325] versus 18037 [IQR, 4889–31329], P=0.0005) and IL-10 (778 pg/ml [IQR, 340–1247] versus 1102 [IQR, 737–1652], P=0.04), respectively. MN patients with high IL-17A levels lived in areas highly exposed to PM2.5: 51 μg/m3 versus 31 μg/m3 for patients with low IL-17A levels (P=0.002) while the World Health Organization recommends an exposition below 10 μg/m3. MN patients with Th17-mediated inflammation had more venous thromboembolic events (P=0.03) and relapsed more often (P=0.0006). Rituximab treatment induced Th1 and regulatory T cell cytokines but did not impact Th17 cytokines. MN patients with Th17-mediated inflammation which appears to be related to an urban environment have worse prognosis. Alternative strategies targeting dysregulated cytokine balance could be considered for these patients at high risk of relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.