Pseudomonas aeruginosa is a major threat for immune-compromised patients. Bacterial pneumonia can induce uncontrolled and massive neutrophil recruitment ultimately leading to acute respiratory distress syndrome and epithelium damage. Interleukin-22 plays a central role in the protection of the epithelium. In this study, we aimed to evaluate the role of interleukin-22 and its soluble receptor IL-22BP in an acute Pseudomonas aeruginosa pneumonia model in mice. In this model, we noted a transient increase of IL-22 during Pseudomonas aeruginosa challenge. Using an antibody-based approach, we demonstrated that IL-22 neutralisation led to increased susceptibility to infection and to lung damage correlated with an increase in neutrophil accumulation in the lungs. On the contrary, rIL-22 administration or IL-22BP neutralisation led to a decrease in mouse susceptibility and lung damage associated with a decrease in neutrophil accumulation. This study demonstrated that the IL-22/IL-22BP system plays a major role during Pseudomonas aeruginosa pneumonia by moderating neutrophil accumulation in the lungs that ultimately leads to epithelium protection.
Our results indicate that linezolid could be superior to vancomycin for the management of MRSA pneumonia by attenuating an excessive inflammatory reaction and protecting the lung from pathogen-associated damages.
Sepsis causes inflammation-induced immunosuppression with lymphopenia and alterations of CD4+ T-cell functions that renders the host prone to secondary infections. Whether and how regulatory T cells (Treg) are involved in this postseptic immunosuppression is unknown. We observed in vivo that early activation of Treg during Staphylococcus aureus sepsis induces CD4+ T-cell impairment and increases susceptibility to secondary pneumonia. The tumor necrosis factor receptor 2 positive (TNFR2pos) Treg subset endorsed the majority of effector immunosuppressive functions, and TNRF2 was particularly associated with activation of genes involved in cell cycle and replication in Treg, probably explaining their maintenance. Blocking or deleting TNFR2 during sepsis decreased the susceptibility to secondary infection. In humans, our data paralleled those in mice; the expression of CTLA-4 was dramatically increased in TNFR2pos Treg after culture in vitro with S. aureus. Our findings describe in vivo mechanisms underlying sepsis-induced immunosuppression and identify TNFR2pos Treg as targets for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.