A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.
Major progress has been made in recent years in the development of Hedgehog (Hh) pathway inhibitors for the treatment of patients with cancer. Promising clinical trial results have been obtained in cancers that harbor activating mutations of the Hh pathway, such as basal cell carcinoma and medulloblastoma. However, for many cancers, in which Hh ligand overexpression is thought to drive tumor growth, results have been disappointing. Here we review the preclinical data that continue to shape our understanding of the Hh pathway in tumorigenesis and the emerging clinical experience with smoothened inhibitors.
Mutations in Hedgehog (Hh) pathway genes, leading to constitutive activation of Smoothened (Smo), occur in medulloblastoma. Antagonists of Smo induce tumor regression in mouse models of medulloblastoma and hold great promise for treating this disease. However, acquired resistance has emerged as a challenge to targeted therapeutics and may limit their anti-cancer efficacy. Here, we describe novel mechanisms of acquired resistance to Smo antagonists in medulloblastoma. NVP-LDE225, a potent and selective Smo antagonist, inhibits Hh signaling and induces tumor regressions in allograft models of medulloblastoma that are driven by mutations of Patched (Ptch), a tumor suppressor in the Hh pathway. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed distinct resistance mechanisms. Chromosomal amplification of Gli2, a downstream effector of Hh signaling, or more rarely point mutations in Smo led to reactivated Hh signaling and restored tumor growth. Unexpectedly, analysis of pathway gene-expression signatures selectively deregulated in resistant tumors identified increased phosphoinositide 3-kinase (PI3K) signaling as another potential resistance mechanism. Probing the functional relevance of increased PI3K signaling, we demonstrated that the combination of NVP-LDE225 with the PI3K class I inhibitor NVP-BKM120 or the dual PI3K/mTOR inhibitor NVP-BEZ235 markedly delayed the development of resistance. Our findings have important clinical implications for future treatment strategies in medulloblastoma.
Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120. This compound inhibits all four class I PI3K isoforms in biochemical assays with at least 50-fold selectivity against other protein kinases. The compound is also active against the most common somatic PI3Ka mutations but does not significantly inhibit the related class III (Vps34) and class IV (mTOR, DNA-PK) PI3K kinases. Consistent with its mechanism of action, NVP-BKM120 decreases the cellular levels of p-Akt in mechanistic models and relevant tumor cell lines, as well as downstream effectors in a concentrationdependent and pathway-specific manner. Tested in a panel of 353 cell lines, NVP-BKM120 exhibited preferential inhibition of tumor cells bearing PIK3CA mutations, in contrast to either KRAS or PTEN mutant models. NVP-BKM120 shows dose-dependent in vivo pharmacodynamic activity as measured by significant inhibition of p-Akt and tumor growth inhibition in mechanistic xenograft models. NVP-BKM120 behaves synergistically when combined with either targeted agents such as MEK or HER2 inhibitors or with cytotoxic agents such as docetaxel or temozolomide. The pharmacological, biologic, and preclinical safety profile of NVP-BKM120 supports its clinical development and the compound is undergoing phase II clinical trials in patients with cancer. Mol Cancer Ther; 11(2); 317-28. Ó2011 AACR.
Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.