A collection of 75 strains of Pectobacterium chrysanthemi (including all biovars and pathovars) and the type strains of Brenneria paradisiaca (CFBP 4178T) and Pectobacterium cypripedii (CFBP 3613T) were studied by DNA–DNA hybridization, numerical taxonomy of 121 phenotypic characteristics, serology and 16S rRNA gene-based phylogenetic analyses. From analysis of 16S rRNA gene sequences, it was deduced that P. chrysanthemi strains and B. paradisiaca CFBP 4178T formed a clade distinct from the genera Pectobacterium and Brenneria; therefore, it is proposed to transfer all the strains to a novel genus, Dickeya gen. nov. By DNA–DNA hybridization, the strains of P. chrysanthemi were distributed among six genomic species: genomospecies 1 harbouring 16 strains of biovar 3 and four strains of biovar 8, genomospecies 2 harbouring 16 strains of biovar 3, genomospecies 3 harbouring two strains of biovar 6 and five strains of biovar 5, genomospecies 4 harbouring five strains of biovar 2, genomospecies 5 harbouring six strains of biovar 1, four strains of biovar 7 and five strains of biovar 9 and genomospecies 6 harbouring five strains of biovar 4 and B. paradisiaca CFBP 4178T. Two strains of biovar 3 remained unclustered. Biochemical criteria, deduced from a numerical taxonomic study of phenotypic characteristics, and serological reactions allowed discrimination of the strains belonging to the six genomic species. Thus, it is proposed that the strains clustered in these six genomic species be assigned to the species Dickeya zeae sp. nov. (type strain CFBP 2052T=NCPPB 2538T), Dickeya dadantii sp. nov. (type strain CFBP 1269T=NCPPB 898T), Dickeya chrysanthemi comb. nov. (subdivided into two biovars, bv. chrysanthemi and bv. parthenii), Dickeya dieffenbachiae sp. nov. (type strain CFBP 2051T=NCPPB 2976T), Dickeya dianthicola sp. nov. (type strain CFBP 1200T=NCPPB 453T) and Dickeya paradisiaca comb. nov., respectively.
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.