The article reports on the influence of annealing PVDF in an autoclave process on the PVDF phase composition. DSC, FTIR and XRD measurements serve to observe the phase changes in an already stretched, polarised and β-phase rich film. Annealing was conducted between 90 and 185 ∘C to cover a broad range of curing processes in an autoclave. The β-phase is found to be stable up to near the melting range at 170 ∘C. At 175 ∘C, the non-piezoelectric α-phase dominates and the piezoelectric γ- and γ′-phases appear. The γ-phase grows at elevated temperatures and replaces the β-phase. This observation stresses the importance of developing new methods to reactivate the polarisation after annealing, in particular for the integration of PVDF as a sensor in laminated structures, such as CFRP.
The rather loosely defined field of crystal engineering offers a wide variety of approaches towards the precise design of nanocrystals for different applications. Thereby, inorganic nanomaterials have been in the...
Electrocatalytic hydrogenation (ECH) of biomass derived compounds is an emerging technology for the production of biofuels. Herein, the ECH of furfural was investigated systematically on femtosecond laser-structured copper electrodes, amending the work on commonly used bulk copper electrodes or electrodeposits. Laser-structuring was used to vary the amount of active sites and the crystallographic orientation on the copper electrodes (evidenced with scanning electron microscopy and X-ray diffraction), and to achieve nickel alloying with the structured copper surface. We showed that the production rate and the Faradaic efficiency for furfural ECH on both Cu (111) and Ni-alloyed Cu were substantially increased. This improvement was ascribed to more catalytic sites offered for hydrogen and interactions of furanic intermediates. Moreover, the Ni-alloyed Cu electrode enabled the stable production of 2methylfuran even at large overpotentials. The mechanistic insights gained could open up new pathways to produce sustainable biofuel candidates with more stable electrodes.
Nanoporous membranes play a critical role in numerous separations on laboratory and industrial scales, ranging from water treatment to biotechnology. However, few strategies exist that allow for the preparation of mechanically robust nanoporous membranes whose separation properties can be easily tuned. Here, we introduce a new family of tunable nanoporous membranes based on nanoparticles decorated with temperature-responsive polymer brushes. We prepared mechanically robust membranes from hairy nanoparticles (HNPs) carrying PNIPAM polymer brushes. We assembled the HNPs into thin films through pressure-driven deposition of nanoparticle suspensions and measured the permeability and filtration cutoff of these membranes at different temperatures. The membrane pore diameter at room temperature varied between 10 and 30 nm depending on the polymer length. The water permeability of these membranes could be controlled by temperature, with the effective pore diameter increasing by a factor of 3–6 (up to 100 nm) when the temperature was increased to 60 °C. The size selectivity of these membranes in the filtration of nanoparticles could also be attenuated by temperature. Molecular dynamics computer simulations of a coarse-grained HNP model show that temperature-sensitive pores sizes are consistent with our experimental results and reveal the polymer configurations responsible for the observed filtration membrane permeability. We expect that these membranes will be useful for separations and in the preparation of responsive microfluidic devices.
The need for energy-storing technologies with lower environmental impact than Li-ion batteries but similar power metrics has revived research in Zn-based battery chemistries. The application of bio-based materials as a replacement for current components can additionally contribute to an improved sustainability of Zn battery systems. For that reason, bacterial cellulose (BC) was investigated as separator material in Ni-Zn batteries. Following the biotechnological production of BC, the biopolymer was purified, and differently shaped separators were generated while surveying the alterations of its crystalline structure via X-ray diffraction measurements during the whole manufacturing process. A decrease in crystallinity and a partial change of the BC crystal allomorph type Iα to II was determined upon soaking in electrolyte. Electrolyte uptake was found to be accompanied by dimensional shrinkage and swelling, which was associated with partial decrystallization and hydration of the amorphous content. The separator selectivity for hydroxide and zincate ions was higher for BC-based separators compared to commercial glass-fiber (GF) or polyolefin separators as estimated from the obtained diffusion coefficients. Electrochemical cycling showed good C-rate capability of cells based on BC and GF separators, whereas cell aging was pronounced in both cases due to Zn migration and anode passivation. Lower electrolyte retention was concluded as major reason for faster capacity fading due to zincate supersaturation within the BC separator. However, combining a dense BC separator with low zincate permeability with a porous one as electrolyte reservoir reduced ZnO accumulation within the separator and improved cycling stability, hence showing potentials for separator adjustment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.