BackgroundUnder conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs). They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3)-induced myocarditis.Methodology/Principal FindingsTo evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR) and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression.ConclusionsWe conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.
In situ tissue engineering is a promising approach in regenerative medicine, with the possibility that adult stem or progenitor cells will be guided chemotactically to a tissue defect and subsequently differentiate into the surrounding tissue type. Mesenchymal stem cells (MSC) represent attractive candidate cells. Chemokines such as CXCL12 (SDF-1alpha) chemoattract MSC, but little is known about the molecular processes involved in the chemotaxis and migration of MSC. In this study, MSC recruitment by CXCL12 was investigated by genome-wide microarray analysis. The dose-dependent migration potential of bone-marrow-derived MSC toward CXCL12 was measured in an in vitro assay, with a maximum being recorded at a concentration of 1,000 nM CXCL12. Microarray analysis of MSC stimulated with CXCL12 and non-stimulated controls showed 30 differentially expressed genes (24 induced and six repressed). Pathway analysis revealed 11 differentially expressed genes involved in cellular movement and cytokine-cytokine receptor interaction, including those for migratory inducers such as the chemokines CXCL8 and CCL26, the leukocyte inhibitory factor, secretogranin II, and prostaglandin endoperoxide synthase 2. These results were confirmed by real-time polymerase chain reaction for selected genes. The obtained data provide further insights into the molecular mechanisms involved in chemotactic processes in cell migration and designate CXCL12 as a promising candidate for in situ recruitment in regenerative therapies.
Heart diseases are a leading cause of morbidity and mortality. Cardiac stem cells (CSC) are considered as candidates for cardiac-directed cell therapies. However, clinical translation is hampered since their isolation and expansion is complex. We describe a population of human cardiac derived adherent proliferating (CAP) cells that can be reliably and efficiently isolated and expanded from endomyocardial biopsies (0.1 cm(3)). Growth kinetics revealed a mean cell doubling time of 49.9 h and a high number of 2.54 x 10(7) cells in passage 3. Microarray analysis directed at investigating the gene expression profile of human CAP cells demonstrated the absence of the hematopoietic cell markers CD34 and CD45, and of CD90, which is expressed on mesenchymal stem cells (MSC) and fibroblasts. These data were confirmed by flow cytometry analysis. CAP cells could not be differentiated into adipocytes, osteoblasts, chondrocytes, or myoblasts, demonstrating the absence of multilineage potential. Moreover, despite the expression of heart muscle markers like alpha-sarcomeric actin and cardiac myosin, CAP cells cannot be differentiated into cardiomyocytes. Regarding functionality, CAP cells were especially positive for many genes involved in angiogenesis like angiopoietin-1, VEGF, KDR, and neuropilins. Globally, principal component and hierarchical clustering analysis and comparison with microarray data from many undifferentiated and differentiated reference cell types, revealed a unique identity of CAP cells. In conclusion, we have identified a unique cardiac tissue derived cell type that can be isolated and expanded from endomyocardial biopsies and which presents a potential cell source for cardiac repair. Results indicate that these cells rather support angiogenesis than cardiomyocyte differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.