Estrogen and its metabolites are believed to play important roles in breast cancer. The influence of genetic polymorphisms in the enzymes responsible for formation and disposition of estrogen on breast cancer risk may shed light on the importance of estrogen metabolites in this disease. However, for such studies to be valid, it is important to correctly identify the enzymes involved in estrogen bioactivation. Therefore, we assessed the human cytochrome P450 -dependent oxidation of estrone using substrate concentrations that more closely approximate the maximum expected concentrations in breast tissue. The in vitro metabolism of estrone by recombinant human cytochrome P450 enzymes and human liver microsomes was studied. The formation of estrone metabolites (2-hydroxyestrone, 4-hydroxyestrone, and 16A-hydroxyestrone) was monitored by high-performance liquid chromatography. 2-Hydroxyestrone formation was catalyzed predominantly by CYP1A2, CYP1A1, and CYP1B1 enzymes; 4-hydroxyestrone formation was catalyzed predominantly by CYP1B1, CYP1A2, and CYP1A1 enzymes; and 16A-hydroxyestrone formation was catalyzed predominantly by CYP2C19, CYP1A1, and CYP3A5. This study confirms the important role of members of the CYP1 family in the 2-hydroxylation and 4-hydroxylation of estrone, but the enzymes identified as responsible for the 16A-hydroxylation of estrone are different from those previously identified. The relative importance of these enzymes in vivo would depend on the specific tissue expression of the enzymes. These enzymes are all known to be genetically variant in the human population, and additional studies to assess the role CYP1A2, CYP2C19, and CYP3A5 in breast cancer risk are indicated. (Cancer Epidemiol Biomarkers Prev 2006;15(3):551 -8)
Genetic polymorphisms in enzymes controlling the formation and disposition of estrogens and their metabolites have been shown to influence breast cancer risk. Environmental and lifestyle factors may interact with estrogen metabolism polymorphisms to influence breast cancer risk. We studied the role of lifestyle factors and genetic polymorphisms in estrogen metabolism in women from Prince Edward Island (PEI), a small province of 135,000 people on the east coast of Canada. Women (207 cases; 621 controls) were matched on age, menopausal status, and family history of breast cancer. The predominant lifestyle risk factors previously reported to influence breast cancer risk such as body mass index (BMI), parity, and smoking had similar influences in the PEI population. Genetic polymorphisms in CYP17, GSTM1, and catechol-O-methyltransferase (COMT) were not associated with a general increase in breast cancer risk. However, the CYP17 A2/A2 genotype was only observed in women with estrogen receptor (ER) positive breast cancer and not in ER negative breast cancer. The increased risk associated with elevated BMI was only observed in women homozygous for the CYP17 and COMT reference alleles. Similarly, the increased risk associated with extended use of oral contraceptives (≥ 15years), was only observed in women homozygous for the reference alleles of CYP17 and COMT. The GSTM1 homozygous gene deletion was associated with a significantly increased risk of breast cancer in postmenopausal women with a family history of breast cancer risk. These results suggest the polymorphic genes that control estrogen formation and disposition interact significantly with other risk factors to influence breast cancer risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.