PET was used to investigate the neural correlates of action knowledge in object representations, particularly the left lateralized network of activations previously implicated in the processing of tools and their associated actions: ventral premotor cortex (VPMCx), posterior middle temporal gyrus (PMTG), and intraparietal sulcus (IPS). Judgments were made about the actions and functions associated with manipulable man-made objects (e.g., hammer); this enabled us to measure activations in response to both explicit and implicit retrieval of knowledge about actions associated with manipulable tools. Function judgments were also made about nonmanipulable artifacts (e.g., traffic light) providing a direct comparison for manipulable objects. Although neither the left VPMCx nor the left PMTG were selective for tool stimuli (nonmanipulable objects also activated these areas relative to a visual control condition), both regions responded more strongly to manipulable objects, suggesting a role for these cortical areas in the processing of knowledge associated with tools. Furthermore, these activations were insensitive to retrieval task, suggesting that visually presented tools automatically recruit both left VPMCx and left PMTG in response to action features that are inherent in tool representations. In contrast, the IPS showed clear selectivity for explicit retrieval of action information about manipulable objects. No regions of cortex were more activated by function relative to action judgments about artifacts. These results are consistent with the brain's preferential responsiveness to how we interact with objects, rather than what they are used for.
Position emission tomography was used to investigate whether retrieval of perceptual knowledge from long-term memory activates unique cortical regions associated with the modality and/or attribute type retrieved. Knowledge about the typical color, size, and sound of common objects and animals was probed, in response to written words naming the objects. Relative to a nonsemantic control task, all the attribute judgments activated similar left temporal and frontal regions. Visual (color, size) knowledge selectivelyactivated the right posterior inferior temporal (PIT) cortex, whereas sound judgments elicited selective activation in the left posterior superior temporal gyrus and the adjacent parietal cortex. All of the attribute judgments activated a left PIT region, but color retrieval generated more activation in this area. Size judgments activated the right medial parietal cortex. These results indicate that the retrieval of perceptual semantic information activates not only a general semantic network, but also cortical areas specialized for the modality and attribute type of the knowledge retrieved.
Event-related potentials (ERPs) were used to investigate whether processing differences between nouns and verbs can be accounted for by the differential salience of visual-perceptual and motor attributes in their semantic specifications. Three subclasses of nouns and verbs were selected, which differed in their semantic attribute composition (abstract, high visual, high visual and motor). Single visual word presentation with a recognition memory task was used. While multiple robust and parallel ERP effects were observed for both grammatical class and attribute type, there were no interactions between these. This pattern of effects provides support for lexical-semantic knowledge being organized in a manner that takes account both of category-based (grammatical class) and attribute-based distinctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.