Deregulation of the Wnt/APC/β-catenin signaling pathway is an important consequence of tumor suppressor APC dysfunction. Genetic and molecular data have established that disruption of this pathway contributes to the development of colorectal cancer. Here, we demonstrate that the transcriptional coregulator RIP140 regulates intestinal homeostasis and tumorigenesis. Using Rip140-null mice and mice overexpressing human RIP140, we found that RIP140 inhibited intestinal epithelial cell proliferation and apoptosis. Interestingly, following whole-body irradiation, mice lacking RIP140 exhibited improved regenerative capacity in the intestine, while mice overexpressing RIP140 displayed reduced recovery. Enhanced RIP140 expression strongly repressed human colon cancer cell proliferation in vitro and after grafting onto nude mice. Moreover, in murine tissues and human cancer cells, RIP140 stimulated APC transcription and inhibited β-catenin activation and target gene expression. Finally, RIP140 mRNA and RIP140 protein levels were decreased in human colon cancers compared with those in normal mucosal tissue, and low levels of RIP140 expression in adenocarcinomas from patients correlated with poor prognosis. Together, these results support a tumor suppressor role for RIP140 in colon cancer.
Ligand-dependent corepressor (LCoR) is a transcriptional repressor of ligand-activated estrogen receptors (ERs) and other transcription factors that acts both by recruiting histone deacetylases and C-terminal binding proteins. Here, we first studied LCOR gene expression in breast cancer cell lines and tissues. We detected two mRNAs variants, LCoR and LCoR2 (which encodes a truncated LCoR protein). Their expression was highly correlated and localized in discrete nuclear foci. LCoR and LCoR2 strongly repressed transcription, inhibited estrogen-induced target gene expression and decreased breast cancer cell proliferation. By mutagenesis analysis, we showed that the helix-turn-helix domain of LCoR is required for these effects. Using in vitro interaction, coimmunoprecipitation, proximity ligation assay and confocal microscopy experiments, we found that receptor-interacting protein of 140 kDa (RIP140) is a LCoR and LCoR2 partner and that this interaction requires the HTH domain of LCoR and RIP140 N- and C-terminal regions. By increasing or silencing LCoR and RIP140 expression in human breast cancer cells, we then showed that RIP140 is necessary for LCoR inhibition of gene expression and cell proliferation. Moreover, LCoR and RIP140 mRNA levels were strongly correlated in breast cancer cell lines and biopsies. In addition, RIP140 positively regulated LCoR expression in human breast cancer cells and in transgenic mouse models. Finally, their expression correlated with overall survival of patients with breast cancer. Taken together, our results provide new insights into the mechanism of action of LCoR and RIP140 and highlight their strong interplay for the control of gene expression and cell proliferation in breast cancer cells.
Proteolytic cleavage of various cancer-related substrates by the proprotein convertases (PC) was reported to be important in the processes of neoplasia. These enzymes are inhibited by their naturally occurring inhibitors, the prosegments (ppPC), and by the engineered general PC inhibitor, the serpin variant A1-PDX. In the present study, we sought to compare the effect of these PC inhibitors on malignant phenotypes of breast cancer cells. Overexpression in a stable manner of A1-PDX and the prosegment ppPACE4 in MDA-MB-231 breast cancer cells resulted in increased matrix metalloproteinase (MMP)-9 (but not MMP-2) activity and a reduced secretion of tissue inhibitor of metalloproteinase 1 (TIMP-1). This was associated with significant enhancement in cell motility, migration, and invasion of collagen in vitro. In contrast, ppFurin expression in these cells decreased MMP-9 activity and diminished these biological functions, but had no significant effect on TIMP-1 secretion. Taken together, these data showed the specific and opposing roles of Furin and PACE4 in the regulation of MMP-9/TIMP-1-mediated cell motility and invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.