Allele loss is a hallmark of chromosome regions harboring recessive oncogenes. Lung cancer frequently demonstrates loss of heterozygosity on 17p. Recent evidence suggests that the p53 gene located on 17p13 has many features of such an antioncogene. The p53 gene was frequently mutated or inactivated in all types of human lung cancer. The genetic abnormalities of p53 include gross changes such as homozygous deletions and abnormally sized messenger RNAs along with a variety of point or small mutations, which map to the p53 open reading frame and change amino acid sequence in a region highly conserved between mouse and man. In addition, very low or absent expression of p53 messenger RNA in lung cancer cell lines compared to normal lung was seen. These findings, coupled with the previous demonstration of 17p allele loss in lung cancer, strongly implicate p53 as an anti-oncogene whose disruption is involved in the pathogenesis of human lung cancer.
Genetic changes involving the c-myc oncogene have been observed in human tumours. In particular, the c-myc gene is translocated in Burkitt's lymphoma and is amplified in the human promyelocytic leukaemia cell line, HL-60, which contains double minute chromosomes (DMs). More recently, an amplified c-myc gene has been positioned on a chromosomal homogeneous staining region (HSR) in a human colon cancer cell line, COLO 320, with neuroendocrine properties. Furthermore, c-myc is expressed in increased amounts in some human tumour lines, and in some cases, human small cell lung cancers (SCLC) contain DMs and HSRs. These findings prompted us to study the c-myc gene and its RNA expression in a series of human lung cancer cell lines. We now report amplification and expression of the c-myc oncogene in a system other than B-cell lymphomas, namely human lung cancer. Of 18 human lung cancer cell lines tested, 8 showed an amplified 12.5-kilobase (kb) EcoRI c-myc DNA band. Of particular interest are five SCLC lines with a high degree of c-myc DNA amplification (20-76-fold) and greatly increased levels of c-myc RNA. All five lines reside in the variant class of SCLC (SCLC-V) characterized by altered morphology, lack of expression of some SCLC-differentiated functions and more malignant behaviour than pure SCLC. Three of the five lines which have been karyotyped also contain DMs or HSRs. The finding of a greatly amplified c-myc gene in all cell lines of the SCLC-V class examined strongly suggests a role for the c-myc gene in the phenotypic conversion and malignant behaviour of human lung cancer.
Altered structure and regulation of the c-myc proto-oncogene have been associated with a variety of human tumours and derivative cell lines, including Burkitt's lymphoma, promyelocytic leukaemia and small cell lung cancer (SCLC). The N-myc gene, first detected by its homology to the second exon of the c-myc gene, is amplified and/or expressed in tumours or cell lines derived from neuroblastoma, retinoblastoma and SCLC. Here we describe a third myc-related gene (L-myc) cloned from SCLC DNA with homology to a small region of both the c-myc and N-myc genes. Human genomic DNA shows an EcoRI restriction fragment length polymorphism (RFLP) of L-myc defined by two alleles (10.0- and 6.6-kilobase (kb) EcoRI fragments), neither associated disproportionately with SCLC. Mouse and hamster DNAs exhibit a 12-kb EcoRI L-myc homologue, which indicates conservation of the gene in mammals. Gene mapping studies assign L-myc to human chromosome region 1p32, a location distinct from that of either c-myc or N-myc but associated with cytogenetic abnormalities in certain human tumours. This L-myc sequence is amplified 10-20-fold in four SCLC cell line DNAs and in one SCLC tumour specimen taken directly from a patient. Either the 10.0- or 6.6-kb allele can be amplified and in heterozygotes only one of the two alleles was amplified in any SCLC genome. SCLC cell lines with amplified L-myc sequences express L-myc-derived transcripts not seen in SCLC with amplified c-myc or N-myc genes. In addition, some SCLCs without amplification also express L-myc-related transcripts. Together, these findings suggest an enlarging role for myc-related genes in human lung cancer and provide evidence for the concept of a myc family of proto-oncogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.