BackgroundRoses have been cultivated for centuries and a number of varieties have been selected based on flower traits such as petal form, color, and number. Wild-type roses have five petals (simple flowers), whereas high numbers of petals (double flowers) are typical attributes of most of the cultivated roses. Here, we investigated the molecular mechanisms that could have been selected to control petal number in roses.Methodology/Principal FindingsWe have analyzed the expression of several candidate genes known to be involved in floral organ identity determination in roses from similar genetic backgrounds but exhibiting contrasting petal numbers per flower. We show that the rose ortholog of AGAMOUS (RhAG) is differentially expressed in double flowers as compared to simple flowers. In situ hybridization experiments confirm the differential expression of RhAG and demonstrate that in the double-flower roses, the expression domain of RhAG is restricted toward the center of the flower. Conversely, in simple-flower roses, RhAG expression domain is wider. We further show that the border of RhAG expression domain is labile, which allows the selection of rose flowers with increased petal number. Double-flower roses were selected independently in the two major regions for domestication, China and the peri-Mediterranean areas. Comparison of RhAG expression in the wild-type ancestors of cultivated roses and their descendants both in the European and Chinese lineages corroborates the correlation between the degree of restriction of RhAG expression domain and the number of petals. Our data suggests that a restriction of RhAG expression domain is the basis for selection of double flowers in both the Chinese and peri-Mediterranean centers of domestication.Conclusions/SignificanceWe demonstrate that a shift in RhAG expression domain boundary occurred in rose hybrids, causing double-flower phenotype. This molecular event was selected independently during rose domestication in Europe/Middle East and in China.
Cultivated for centuries, the varieties of rose have been selected based on a number of flower traits. Understanding the genetic and molecular basis that contributes to these traits will impact on future improvements for this economically important ornamental plant. In this study, we used scanning electron microscopy and sections of meristems and flowers to establish a precise morphological calendar from early rose flower development stages to senescing flowers. Global gene expression was investigated from floral meristem initiation up to flower senescence in three rose genotypes exhibiting contrasted floral traits including continuous versus once flowering and simple versus double flower architecture, using a newly developed Affymetrix microarray (Rosa1_Affyarray) tool containing sequences representing 4765 unigenes expressed during flower development. Data analyses permitted the identification of genes associated with floral transition, floral organs initiation up to flower senescence. Quantitative real time PCR analyses validated the mRNA accumulation changes observed in microarray hybridizations for a selection of 24 genes expressed at either high or low levels. Our data describe the early flower development stages in Rosa sp, the production of a rose microarray and demonstrate its usefulness and reliability to study gene expression during extensive development phases, from the vegetative meristem to the senescent flower.
International audienceSomatic embryogenesis was induced from in vitro-derived leaf explants of Rosa chinensis cultivar (cv) Old Blush. Calli producing embryos with expanded cotyledons (RcOBType1 embryos) were obtained. Further refinements of the callus maintenance medium generated a more typical rose embryogenic callus (RcOBType2) displaying high levels of secondary embryogenesis and embryos with limited cotyledon expansion Agrobacterium tumefaciens-mediated transformation assays using β-glucuronidase (GUS) reporter gene showed that both types of embryos were competent for transformation. Under selection conditions, transformed RcOBType1 explants produced non chimaeric transformed embryos, from which shoots could be adventitiously regenerated. In contrast to RcOBType1, transformed RcOBType2 embryos directly yielded transformed shoots when repeatedly cultured in selective regeneration conditions. Transformation efficiency ranged between three to nine percent and shoots suitable for rooting were obtained within 6-8 months. Transgenic plants were transferred into the greenhouse and molecularly confirmed. The availability of transformation methods in a diploid rose, R. chinensis cv. Old Blush, will be useful for gene functional studies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.