(4) disclose previously undetected features of GPCR behavior. Significant impact of DMR is therefore anticipated in the emerging areas of systems biology and systems pharmacology but also for the discovery of mechanistically novel drugs.3
Selective modulation of cell function by G protein-coupled receptor (GPCR) activation is highly desirable for basic research and therapy but difficult to achieve. We present a novel strategy toward this goal using muscarinic acetylcholine receptors as a model. The five subtypes bind their physiological transmitter in the highly conserved orthosteric site within the transmembrane domains of the receptors. Orthosteric muscarinic activators have no binding selectivity and poor signaling specificity. There is a less well conserved allosteric site at the extracellular entrance of the binding pocket. To gain subtype-selective receptor activation, we synthesized two hybrids fusing a highly potent oxotremorine-like orthosteric activator with M(2)-selective bis(ammonio)alkane-type allosteric fragments. Radioligand binding in wild-type and mutant receptors supplemented by receptor docking simulations proved M(2) selective and true allosteric/orthosteric binding. G protein activation measurements using orthosteric and allosteric blockers identified the orthosteric part of the hybrid to engender receptor activation. Hybrid-induced dynamic mass redistribution in CHO-hM(2) cells disclosed pathway-specific signaling. Selective receptor activation (M(2)>M(1)>M(3)) was verified in living tissue preparations. As allosteric sites are increasingly recognized on GPCRs, the dualsteric concept of GPCR targeting represents a new avenue toward potent agonists for selective receptor and signaling pathway activation.
Increasing attention is paid in basic science and in drug discovery to pathway selective intracellular signaling as a novel approach to achieve precise control of cell function via G protein-coupled receptors (GPCRs). With respect to signaling, GPCRs are often promiscuous in that more than one intracellular biochemical pathway is activated upon receptor stimulation by the endogenous transmitter or by exogenous drugs. We studied signaling by a novel class of GPCR activators that were designed to bind simultaneously to the orthosteric transmitter-binding site and the allosteric site of muscarinic acetylcholine receptors. An optical biosensor technique was applied to measure activation-induced dynamic mass redistribution (DMR) in CHO cells stably expressing the muscarinic receptor subtype of interest. The use of tools to modulate signaling and measuring G protein activation directly proved that DMR is a valid and comfortable approach to gain real-time insight into intracellular signaling pathway activation and to identify signaling pathway-selective drugs.
Dem Sehverlust bei der feuchten Form der altersbedingten Makuladegeneration liegt das Einsprossen neuer Kapillaren aus der Aderhaut in die Netzhaut zugrunde. In den Glaskörper injiziert inaktiviert das Antikörperfragment Ranibizumab (Lucentis) den vaskulären endothelialen Wachstumsfaktor A (VEGF-A) und vermag so eine Stabilisierung oder gar Verbesserung der Sehschärfe herbeizuführen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.