Tubular aggregates are morphological abnormalities characterized by the accumulation of densely packed tubules in skeletal muscle fibres. To improve knowledge of tubular aggregates, the formation and role of which are still unclear, the present study reports the electron microscopic analysis and protein characterization of tubular aggregates in six patients with 'tubular aggregate myopathy'. Three of the six patients also presented with myasthenic features. A large panel of immunochemical markers located in the sarcoplasmic reticulum, T-tubules, mitochondria, and nucleus was used. Despite differences in clinical phenotype, the composition of tubular aggregates, which contained proteins normally segregated differently along the sarcoplasmic reticulum architecture, was similar in all patients. All of these proteins, calsequestrin, RyR, triadin, SERCAs, and sarcalumenin, are involved in calcium uptake, storage, and release. The dihydropyridine receptor, DHPR, specifically located in the T-tubule, was also present in tubular aggregates in all patients. COX-2 and COX-7 mitochondrial proteins were not found in tubular aggregates, despite being observed close to them in the muscle fibre. The nuclear membrane protein emerin was found in only one case. Electron microscopy revealed vesicular budding from nuclei, and the presence of SAR-1 GTPase protein in tubular aggregates shown by immunochemistry, in all patients, suggests that tubular aggregates could arise from endoplasmic reticulum exit sites. Taken together, these results cast new light on the composition and significance of tubular aggregates.
A 24-h fasting test was performed in 48 control children, in 9 hypoketotic patients with inherited defects of fatty acid oxidation and in 2 hyperketotic patients with inherited defects of ketolysis. The control group was then divided into three age groups on the basis of different adaptation to fasting. Concentrations of blood glucose, lactate, free fatty acids (FFA), 3-hydroxybutyrate, acetoacetate and carnitine were measured after 15 h, 20 h and 24 h of fasting. Significant negative correlations were found in the control group between plasma total ketone bodies (KB) and plasma glucose (P less than 0.001), plasma carnitine (P less than 0.005) and the amplitude of glycaemic response to glucagon at the end of the fast (P less than 0.01). FFA/KB ratio and the product of final fasting values of glucose and ketones were useful to differentiate between hypoketotic or hyperketotic patients and normal subjects. In children with a suspected or definite hyperketotic or hypoketotic disorder, a fasting test must only be performed in healthy patients, in good nutritional condition with non-diagnostic basal biochemical investigations. Carefully supervised fasting should be continued sufficiently to allow ketogenesis and ketolysis to become activated.
Congenital myasthenic syndromes (CMSs) are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. Mutations of DOK7 have recently been described in recessive forms of CMS. Dok-7 is a cytoplasmic post-synaptic protein co-activator of the muscle-specific receptor-tyrosine kinase (MuSK) involved in neuromuscular synaptogenesis and maintenance. We report clinical, morphological and molecular data on 15 patients with mutations in DOK7. Eleven different mutations (5 novel) were identified and all patients but one were found to carry at least the common c.1124_1127dupTGCC mutation. Patients with DOK7 mutations have a particular limb-girdle pattern, without tubular aggregates but a frequent lipidosis on the muscle biopsy. Changes in pre- and post-synaptic compartments of the neuromuscular junction were also observed in muscle biopsies: terminal axons showed defective branching which resulted in a unique terminal axon contacting en passant postsynaptic cups. Clinical features, muscle biopsy findings or response to therapy were confusing in several patients. Characterization of this distinct phenotype is essential to provide clues for targeted genetic screening and to predict the therapeutic response to anticholinesterase treatments or ephedrine as has been suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.