We have identified proteins that are abundant in affinity-purified proteasomes, but absent from proteasomes as previously defined because elevated salt concentrations dissociate them during purification. The major components are a deubiquitinating enzyme (Ubp6), a ubiquitin-ligase (Hul5), and an uncharacterized protein (Ecm29). Ecm29 tethers the proteasome core particle to the regulatory particle. Proteasome binding activates Ubp6 300-fold and is mediated by the ubiquitin-like domain of Ubp6, which is required for function in vivo. Ubp6 recognizes the proteasome base and its subunit Rpn1, suggesting that proteasome binding positions Ubp6 proximally to the substrate translocation channel. ubp6Delta mutants exhibit accelerated turnover of ubiquitin, indicating that deubiquitination events catalyzed by Ubp6 prevent translocation of ubiquitin into the proteolytic core particle.
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function.
The molecular chaperone GroE facilitates correct protein folding in vivo and in vitro. The mode of action of GroE was investigated by using refolding of citrate synthase as a model system. In vitro denaturation of this dimeric protein is almost irreversible, since the refolding polypeptide chains aggregate rapidly, as shown directly by a strong, concentration-dependent increase in light scattering. The yields of reactivated citrate synthase were strongly increased upon addition of GroE and MgATP. GroE inhibits aggregation reactions that compete with correct protein folding, as indicated by specific suppression of light scattering. GroEL rapidly forms a complex with unfolded or partially folded citrate synthase molecules. In this complex the refolding protein is protected from aggregation. Addition of GroES and ATP hydrolysis is required to release the polypeptide chain bound to GroEL and to allow further folding to its final, active state.
The ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome. However, the products of Hul5 conjugation are subject to disassembly by a proteasome-bound deubiquitinating enzyme, Ubp6. A hul5 null mutation suppresses a ubp6 null mutation, suggesting that a balance of chain-extending and chain-trimming activities is required for proper proteasome function. As the association of Hul5 with proteasomes was found to be strongly stabilized by Ubp6, these enzymes may be situated in proximity to one another. We propose that through dynamic remodeling of ubiquitin chains, proteasomes actively regulate substrate commitment to degradation.
Substrates of the proteasome are recognized and unfolded by the regulatory particle (RP), then translocated into the core particle (CP) to be degraded1. A hetero-hexameric ATPase ring, containing subunits Rpt1-Rpt6, is situated within the base subassembly of the RP1. The ATPase ring sits atop the CP, with the Rpt C-termini inserted into pockets in the CP2–6. We have identified a novel function of the Rpt proteins in proteasome biogenesis through deleting the C-terminal residue from each Rpt. Our results indicate that assembly of the hexameric ATPase ring is templated on the CP. We have also identified an apparent intermediate in base assembly, BP1, which contains Rpn1, three Rpts, and Hsm3, a chaperone for base assembly. The Rpt proteins with the strongest assembly phenotypes, Rpt4 and Rpt6, were absent from BP1. We propose that Rpt4 and Rpt6 form a nucleating complex to initiate base assembly, and that this complex is subsequently joined by BP1 to complete the Rpt ring. Our studies show that assembly of the proteasome base is a rapid yet highly orchestrated process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.