This paper addresses a safe path planning problem for UAV urban navigation, under uncertain GNSS availability. The problem can be modeled as a POMDP and solved with sampling-based algorithms. However, such a complex domain suffers from high computational cost and achieves poor results under real-time constraints. Recent research seeks to integrate offline learning in order to efficiently guide online planning. Inspired by the state-of-the-art CAMP (Context-specific Abstract Markov decision Process) formalization, this paper proposes an offline process which learns the path constraint to impose during online POMDP solving in order to reduce the policy search space. More precisely, the offline learnt constraint selector returns the best path constraint according to the GNSS availability probability in the environment. Conclusions of experiments, carried out for three environments, show that using the proposed approach allows to improve the quality of a solution reached by an online planner, within a fixed decision-making timeframe, particularly when GNSS availability probability is low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.