Key Points• Runx1 is necessary for survival and development of B cell-specified progenitors and also the transition through the pre-B-cell stage.• Genomewide expression and Runx1 occupancy analyses identified critical target genes and collaborating transcription partners.The t(12;21) chromosomal translocation, targeting the gene encoding the RUNX1 transcription factor, is observed in 25% of pediatric acute lymphoblastic leukemia (ALL) and is an initiating event in the disease. To elucidate the mechanism by which RUNX1 disruption initiates leukemogenesis, we investigated its normal role in murine B-cell development. This study revealed 2 critical functions of Runx1: (1) to promote survival and development of progenitors specified to the B-cell lineage, a function that can be substituted by ectopic Bcl2 expression, and (2) to enable the developmental transition through the pre-B stage triggered by the pre-B-cell antigen receptor (pre-BCR). Gene expression analysis and genomewide Runx1 occupancy studies support the hypothesis that Runx1 reinforces the transcription factor network governing early B-cell survival and development and specifically regulates genes encoding members of the Lyn kinase subfamily (key integrators of interleukin-7 and pre-BCR signaling) and the stage-specific transcription factors SpiB and Aiolos (critical downstream effectors of pre-BCR signaling). Interrogation of expression databases of 257 ALL samples demonstrated the specific down-regulation of the SPIB and IKZF3 genes (the latter encoding AIOLOS) in t(12;21) ALL, providing novel insight into the mechanism by which the translocation blocks B-cell development and promotes leukemia. (Blood. 2013; 122(3):413-423)
Key Points• Mef2c and Mef2d are activated by the pre-B-cell receptor and are essential for pre-B-cell transition.• Mef2c complexes with B-cell transcription factors to shut down the immediate early response and to initiate a new transcriptional network.The sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms involved in initiating downstream programs are incompletely understood. The pre-B-cell receptor (pre-BCR) is an important checkpoint of B-cell development and is essential for a pre-B cell to traverse into an immature B cell. Here, we show that activation of myocyte enhancer factor 2 (Mef2) transcription factors (TFs) by the pre-BCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the pre-B-cell stage in mice deficient for Mef2c and Mef2d TFs and that pre-BCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the Erk5 mitogen-activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. (Blood. 2016;127(5):572-581)
• Runx1 is a key determinant of megakaryocyte cell-fate decisions in multipotent progenitors.• Runx1 downregulates celladhesion factors that promote residency of stem cells and megakaryocytes in their bone marrow niche.Disrupting mutations of the RUNX1 gene are found in 10% of patients with myelodysplasia (MDS) and 30% of patients with acute myeloid leukemia (AML). Previous studies have revealed an increase in hematopoietic stem cells (HSCs) and multipotent progenitor (MPP) cells in conditional Runx1-knockout (KO) mice, but the molecular mechanism is unresolved. We investigated the myeloid progenitor (MP) compartment in KO mice, arguing that disruptions at the HSC/MPP level may be amplified in downstream cells. We demonstrate that the MP compartment is increased by more than fivefold in Runx1 KO mice, with a prominent skewing toward megakaryocyte (Meg) progenitors. Runx1-deficient granulocyte-macrophage progenitors are characterized by increased cloning capacity, impaired development into mature cells, and HSC and Meg transcription signatures. An HSC/MPP subpopulation expressing Meg markers was also increased in Runx1-deficient mice. Rescue experiments coupled with transcriptome analysis and Runx1 DNA-binding assays demonstrated that granulocytic/monocytic (G/M) commitment is marked by Runx1 suppression of genes encoding adherence and motility proteins (Tek, Jam3, Plxnc1, Pcdh7, and Selp) that support HSC-Meg interactions with the BM niche. In vitro assays confirmed that enforced Tek expression in HSCs/MPPs increases Meg output. Interestingly, besides this key repressor function of Runx1 to control lineage decisions and cell numbers in progenitors, our study also revealed a critical activating function in erythroblast differentiation, in addition to its known importance in Meg and G/M maturation. Thus both repressor and activator functions of Runx1 at multiple hematopoietic stages and lineages likely contribute to the tumor suppressor activity in MDS and AML. (Blood. 2016;127(26):3369-3381)
Significance Immunodeficient mice are important tools to define stem cells that drive malignancies (cancers). Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm that can progress to malignant leukemia. In a study to define PMF stem cells in transplanted mice, we observed a high incidence of mouse leukemia. We show that endogenous retrovirus (ERV), whose replication is unrestricted in immunodeficient mice, are pathogenic in the PMF-xenograft microenvironment, likely because of increased numbers of proliferating mouse cells stimulated by PMF-derived cells. Proliferating cells are targets of retroviral transformation and spontaneous mutations, and thus susceptible to leukemia induction. These results substantiate the importance of paracrine mechanisms in PMF disease and expose the presence of replicating ERVs in mice commonly used to model human diseases.
The expression of Moloney murine leukemia virus (Mo-MuLV) and Mo-MuLV-derived vectors is restricted in undifferentiated mouse embryonal carcinoma and embryonal stem (ES) cells. We have previously described the isolation of retroviral mutants with host range properties expanded to embryonal cell lines. One of these mutants, the murine embryonic stem cell virus (MESV), is expressed in ES cell lines. Expression of MESV in these cells relies on DNA sequence motifs within the enhancer region of the viral long terminal repeat (LTR). Here we show that replacement of the Mo-MuLV enhancer region by sequences derived from the MESV LTR results in the activation of the Mo-MuLV LTR in ES cells. The enhancer regions of MESV and Mo-MuLV differ by seven point mutations. Of these, a single point mutation at position-166 is sufficient to activate the Mo-MuLV LTR and to confer enhancer-dependent expression to Mo-MuLV-derived retroviral vectors in ES cells. This point mutation creates a recognition site for a sequence-specific DNA-binding factor present in nuclear extracts of ES cells. This factor was found by functional assays to be the murine equivalent to human Spl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.