Inelastic deformation of anomalous glasses manifests in shear flow and densification of the glass network; the deformation behavior during indentation testing is linked strongly to both processes. In this paper, the indentation densification field of fused silica is investigated using depth‐resolved Raman spectroscopy and finite element simulations. Through affecting the size of the indent, the normal load and the Raman laser spot size determine the spatial sampling resolution, leading to a certain degree of structural averaging. For appropriate combinations of normal load (indent size) and laser spot diameter, a maximum densification of 18.4% was found at the indent center. The indentation behavior was modeled by extended Drucker‐Prager‐Cap (DPC) plasticity, assuming a sigmoidal hardening behavior of fused silica with a densification saturation of 21%. This procedure significantly improved the reproduction of the experimental densification field, yielding a maximum densification of 18.2% directly below the indenter tip. The degree of densification was found to be strongly linked to the hydrostatic pressure limit below the indenter in accordance to Johnson's expanding cavity model (J. Mech. Phys. Solids, 18 (1970) 115). Based on the good overlap between FEA and Raman, an alternative way to extract the empirical correlation factor m, which scales structural densification to Raman spectroscopic observations, is obtained. This approach does not require the use of intensive hydrostatic compaction experiments.
This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly(methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P 2 O 5 -11Na 2 O (BV11) and 44.5CaO-44.5P 2 O 5 -6Na 2 O-5TiO 2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG) techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt %
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.