Recent developments in remote sensing have shown that snow depth can be estimated accurately on a global scale using satellite images through cross-polarization and copolarization backscatter measurements. This method does however have some limitations in low-land areas with dense forest coverage and shallow snow, that is often found nearby urban areas. In these areas, citizen observations can be fused with satellite-based estimations to deliver more accurate solutions. To that end, we use snow-related tweets that have been annotated by artificial intelligence (AI) methods and are introduced in a novel neural network model, aiming to increase the estimation accuracy of the state-of-the-art remote sensing method. The proposed model combines the estimated snow depth from Sentinel 1 images with the number of Twitter posts and Twitter images that are semantically relevant to snow. The use of instant social media data for purposes of snow depth estimation is investigated, validated and tested in Finland. Our results show that this approach does improve the snow depth estimation, highlighting its potential for use in civil protection agencies in managing snow conditions.
Flooding is one of the most destructive natural phenomena that happen worldwide, leading to the damage of property and infrastructure or even the loss of lives. The escalation in the intensity and number of flooding events as a result of the combination of climate change and anthropogenic factors motivates the need to adopt real-time solutions for mapping flood hazards and risks. In this study, a methodological framework is proposed that enables the assessment of flood hazard and risk levels of severity dynamically by fusing optical remote sensing (Sentinel-1) and GIS-based data from the region of the Trieste, Monfalcone and Muggia Municipalities. Explainable machine learning techniques were utilised, aiming to interpret the results for the assessment of flood hazard. The flood inventory was randomly divided into 70%, used for training, and 30%, employed for testing. Various combinations of the models were evaluated for the assessment of flood hazard. The results revealed that the Random Forest model achieved the highest F1-score (approx. 0.99), among others utilised for generating flood hazard maps. Furthermore, the estimation of the flood risk was achieved by a combination of a rule-based approach to estimate the exposure and vulnerability with the dynamic assessment of flood hazard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.