This study examined the effects of a progressive resistance training program in addition to soccer training on the physical capacities of male adolescents. Eighteen soccer players (age: 12-15 years) were separated in a soccer (SOC; n = 9) and a strength-soccer (STR; n = 9) training group and 8 subjects of similar age constituted a control group. All players followed a soccer training program 5 times a week for the development of technical and tactical skills. In addition, the STR group followed a strength training program twice a week for 16 weeks. The program included 10 exercises, and at each exercise, 2-3 sets of 8-15 repetitions with a load 55-80% of 1 repetition maximum (1RM). Maximum strength ([1RM] leg press, bench-press), jumping ability (squat jump [SJ], countermovement jump [CMJ], repeated jumps for 30 seconds) running speed (30 m, 10 x 5-m shuttle run), flexibility (seat and reach), and soccer technique were measured at the beginning, after 8 weeks, and at the end of the training period. After 16 weeks of training, 1RM leg press, 10 x 5-m shuttle run speed, and performance in soccer technique were higher (p < 0.05) for the STR and the SOC groups than for the control group. One repetition maximum bench press and leg press, SJ and CMJ height, and 30-m speed were higher (p < 0.05) for the STR group compared with SOC and control groups. The above data show that soccer training alone improves more than normal growth maximum strength of the lower limps and agility. The addition of resistance training, however, improves more maximal strength of the upper and the lower body, vertical jump height, and 30-m speed. Thus, the combination of soccer and resistance training could be used for an overall development of the physical capacities of young boys.
This paper concerns the collation, quality control, and analysis of single-point field measurements from fixed sensors mounted on offshore platforms. In total, the quality-controlled database contains 122 million individual waves, of which 3649 are rogue waves. Geographically, the majority of the field measurements were recorded in the North Sea, with supplementary data from the Gulf of Mexico, the South China Sea, and the North West shelf of Australia. The significant wave height ranged from 0.12 to 15.4 m, the peak period ranged from 1 to 24.7 s, the maximum crest height was 18.5 m, and the maximum recorded wave height was 25.5 m. This paper will describe the offshore installations, instrumentation, and the strict quality control procedure employed to ensure a reliable dataset. An examination of sea state parameters, environmental conditions, and local characteristics is performed to gain an insight into the behavior of rogue waves. Evidence is provided to demonstrate that rogue waves are not governed by sea state parameters. Rather, the results are consistent with rogue waves being merely extraordinary and rare events of the normal population caused by dispersive focusing.
This paper concerns the statistical distribution of the crest heights associated with surface waves in intermediate water depths. The results of a new laboratory study are presented in which data generated in different experimental facilities are used to establish departures from commonly applied statistical distributions. Specifically, the effects of varying sea-state steepness, effective water depth and directional spread are investigated. Following an extensive validation of the experimental data, including direct comparisons to available field data, it is shown that the nonlinear amplification of crest heights above second-order theory observed in steep deep water sea states is equally appropriate to intermediate water depths. These nonlinear amplifications increase with the sea-state steepness and reduce with the directional spread. While the latter effect is undoubtedly important, the present data confirm that significant amplifications above second order (5–10%) are observed for realistic directional spreads. This is consistent with available field data. With further increases in the sea-state steepness, the dissipative effects of wave breaking act to reduce these nonlinear amplifications. While the competing mechanisms of nonlinear amplification and wave breaking are relevant to a full range of water depths, the relative importance of wave breaking increases as the effective water depth reduces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.