In this study, poly(acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends with various compositions were prepared by melt intercalation in a twin-screw extruder. Modifications of the above blends were performed by using organically modified montmorillonite (OMMT, Cloisite 30B) reinforcement as well as two types of compatibilizers, namely polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). Increasing the PP content in ABS matrix seems to increase the melt flow and thermal stability of their blends, whereas a deterioration of the tensile properties was recorded. On the other hand, the addition of ABS to PP promotes the formation of the b-crystalline phase, which became maximum at 30 wt% ABS concentration, and increases the crystallization temperature (T c ) of PP. A tendency for increase of T c was also recorded by incorporation of the above compatibilizers, whereas the glass transition temperature (T g ) of PP and SAN phase in ABS was reduced. Regarding the Young's modulus, the greatest improvement was observed in pure ABS/PP blends containing organically modified nanoclay. However, in reinforced pure PP, the use of compatibilizers is recommended in order to improve the elastic modulus. The addition of OMMT to noncompatibilized and compatibilized ABS/PP blends significantly improves their storage modulus. POLYM. ENG. SCI., 56:458-468, 2016.
The blending of polymers leads to materials with the desired combined properties. These properties can further be improved by the incorporation of compatibilizer, organoclay, or both. In the present manuscript, the effects of compatibilizer and organoclay, as well as their combined use on the rheological, thermal, and mechanical properties of styrene copolymer blends, is examined. Styrene-containing copolymers blends were prepared by melt-mixing in a twin screw extruder. The addition of SAN into ABS decreases its thermal stability, whereas it increases its tensile strength and modulus. The incorporation of organoclay in ABS/SAN blends increases their viscosity and slightly improves their thermal stability and significantly improves the tensile and storage moduli. In PC/SAN blends, the SAN copolymer increases the flow rate, as well as the tensile strength and modulus of PC, whereas it decreases the thermal stability. The addition of ABS-g-MAH compatibilizer in PC/SAN blends increases the melt viscosity and maximum decomposition rate temperature of SAN phase, while it leads to the earlier decomposition of the PC phase. The incorporation of organoclay reinforcement enhances the thermal decomposition resistance of thes SAN phase. The opposite effect was recorded for the PC phase. The addition of organoclay enhances the elastic modulus of PC/SAN hybrids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.