Several continuous-time and discrete-time recurrent neural network models have been developed and applied to various engineering problems. One of the difficulties encountered in the application of recurrent networks is the derivation of efficient learning algorithms that also guarantee the stability of the overall system. This paper studies the approximation and learning properties of one class of recurrent networks, known as high-order neural networks; and applies these architectures to the identification of dynamical systems. In recurrent high-order neural networks, the dynamic components are distributed throughout the network in the form of dynamic neurons. It is shown that if enough high-order connections are allowed then this network is capable of approximating arbitrary dynamical systems. Identification schemes based on high-order network architectures are designed and analyzed.
Following the events of September 11, 2001, in the United States, world public awareness for possible terrorist attacks on water supply systems has increased dramatically. Among the different threats for a water distribution system, the most difficult to address is a deliberate chemical or biological contaminant injection, due to both the uncertainty of the type of injected contaminant and its consequences, and the uncertainty of the time and location of the injection. An online contaminant monitoring system is considered as a major opportunity to protect against the impacts of a deliberate contaminant intrusion. However, although optimization models and solution algorithms have been developed for locating sensors, little is known about how these design algorithms compare to the efforts of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.