Pathogenic bacteria demonstrate incredible abilities to evade conventional antibiotics through the development of resistance and formation of dormant, surface-attached biofilms. Therefore, agents that target and eradicate planktonic and biofilm bacteria are of significant interest. We explored a new series of halogenated phenazines (HP) through the use of N-aryl-2nitrosoaniline synthetic intermediates that enabled functionalization of the 3-position of this scaffold. Several HPs demonstrated potent antibacterial and biofilm-killing activities (e.g., HP 29, against methicillin-resistant Staphylococcus aureus: MIC = 0.075 μM; MBEC = 2.35 μM), and transcriptional analysis revealed that HPs 3, 28, and 29 induce rapid iron starvation in MRSA biofilms. Several HPs demonstrated excellent activities against Mycobacterium tuberculosis (HP 34, MIC = 0.80 μM against CDC1551). This work established new SAR insights, and HP 29 demonstrated efficacy in dorsal wound infection models in mice. Encouraged by these findings, we believe that HPs could lead to significant advances in the treatment of challenging infections.
Neurofibromatosis type 2 (NF2) is a nervous system tumor disorder caused by inactivation of the merlin tumor suppressor encoded by the gene. Bilateral vestibular schwannomas are a diagnostic hallmark of NF2. Mainstream treatment options for NF2-associated tumors have been limited to surgery and radiotherapy; however, off-label uses of targeted molecular therapies are becoming increasingly common. Here, we investigated drugs targeting two kinases activated in NF2-associated schwannomas, c-Met and Src. We demonstrated that merlin-deficient mouse Schwann cells (MD-MSC) treated with the c-Met inhibitor, cabozantinib, or the Src kinase inhibitors, dasatinib and saracatinib, underwent a G cell-cycle arrest. However, when MD-MSCs were treated with a combination of cabozantinib and saracatinib, they exhibited caspase-dependent apoptosis. The combination therapy also significantly reduced growth of MD-MSCs in an orthotopic allograft mouse model by greater than 80% of vehicle. Moreover, human vestibular schwannoma cells with mutations had a 40% decrease in cell viability when treated with cabozantinib and saracatinib together compared with the vehicle control. This study demonstrates that simultaneous inhibition of c-Met and Src signaling in MD-MSCs triggers apoptosis and reveals vulnerable pathways that could be exploited to develop NF2 therapies..
Background. Neurofibromatosis type 2 (NF2) is a genetic tumor-predisposition disorder caused by NF2/merlin tumor suppressor gene inactivation. The hallmark of NF2 is formation of bilateral vestibular schwannomas (VS). Because merlin modulates activity of the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, we investigated repurposing drugs targeting MEK1 and/or MEK2 as a treatment for NF2-associated schwannomas. Methods. Mouse and human merlin-deficient Schwann cell lines (MD-MSC/HSC) were screened against 6 MEK1/2 inhibitors. Efficacious drugs were tested in orthotopic allograft and NF2 transgenic mouse models. Pathway and proteome analyses were conducted. Drug efficacy was examined in primary human VS cells with NF2 mutations and correlated with DNA methylation patterns. Results. Trametinib, PD0325901, and cobimetinib were most effective in reducing MD-MSC/HSC viability. Each decreased phosphorylated pERK1/2 and cyclin D1, increased p27, and induced caspase-3 cleavage in MD-MSCs. Proteomic analysis confirmed cell cycle arrest and activation of pro-apoptotic pathways in trametinib-treated MD-MSCs. The 3 inhibitors slowed allograft growth; however, decreased pERK1/2, cyclin D1, and Ki-67 levels were observed only in PD0325901 and cobimetinib-treated grafts. Tumor burden and average tumor size were reduced in trametinib-treated NF2 transgenic mice; however, tumors did not exhibit reduced pERK1/2 levels. Trametinib and PD0325901 modestly reduced viability of several primary human VS cell cultures with NF2 mutations. DNA methylation analysis of PD0325901-resistant versus -susceptible VS identified genes that could contribute to drug resistance. Fuse et al. MEK inhibitors slow NF2 schwannoma growth Neuro-OncologyConclusion. MEK inhibitors exhibited differences in antitumor efficacy resistance in schwannoma models with possible emergence of trametinib resistance. The results support further investigation of MEK inhibitors in combination with other targeted drugs for NF2 schwannomas. Key Points1. Cobimetinib and trametinib reduced NF2 schwannoma model cell proliferation in vitro and in vivo.2. Biochemical/proteome analyses reveal cell cycle arrest and apoptosis of trametinib-treated cells.3. Human vestibular schwannoma cell viability is modestly inhibited by PD0325901 and trametinib.
The diffusion-limited reaction of nitric oxide (NO) and superoxide (O 2 − ) produces peroxynitrite (ONOO − ), a biological oxidant that has been implicated in a number of pathological conditions, including neurodegenerative disorders. We previously reported that incubation of PC12 cells with peroxynitrite triggers apoptosis by simultaneously inhibiting the PI3K/Akt survival pathway, and activating the p38 and JNK MAP kinase pathways. We also reported that peroxynitrite-treated Heat Shock Protein 90 (Hsp90) stimulates PC12 cell death. Here, we show that nitrated Hsp90 mediates peroxynitrite-induced apoptosis by regulating specific signaling pathways triggered by activation of the purine receptor P2X7 (P2X7R) and downstream activation of PTEN. Intracellular delivery of peroxynitrite-treated Hsp90 was sufficient to stimulate PC12 cell death. In contrast, intracellular delivery of peroxynitrite-treated Hsp90 in which the five tyrosine (Tyr) residues susceptible to nitration were replaced by nitration-resistant phenylalanine had no effect on PC12 cell survival. Further, only nitration of Hsp90 at Tyr 56 was necessary and sufficient to stimulate PC12 cell apoptosis, and incubation of PC12 cells with peroxynitrite resulted in Hsp90 nitration at Tyr 56. Inhibition of P2X7R or downstream inhibition of PTEN prevented PC12 cell death stimulated by both incubation with peroxynitrite and nitrated Hsp90 (Hsp90 NY ). Peroxynitrite, Hsp90 NY , and P2X7R activation all increased p38 and JNK MAP kinases activity, while inhibiting the Akt survival pathway. These results suggest that, in undifferentiated PC12 cells, peroxynitrite triggers apoptosis via nitration of Hsp90 at Tyr 56, which in turn activates P2X7R and PTEN. These results contrast with observations in motor neurons where the nitration of either Tyr 33 or Tyr 56 in Hsp90 stimulates apoptosis, suggesting that the targets of peroxynitrite may be different in different cell types. However, uncovering the pathways through which peroxynitrite triggers cell death in neurodegenerative conditions will provide new potential targets for therapeutic treatment.
Neurofibromatosis type 2 (NF2) is an autosomal-dominant disorder characterized by the development of bilateral vestibular schwannomas. The NF2 gene encodes the tumor suppressor merlin, and loss of merlin activity promotes tumorigenesis and causes NF2. Cellular redox signaling has been implicated in different stages of tumor development. Among reactive nitrogen species, peroxynitrite is the most powerful oxidant produced by cells. We recently showed that peroxynitrite-mediated tyrosine nitration down-regulates mitochondrial metabolism in tumor cells. However, whether peroxynitrite supports a metabolic shift that could be exploited for therapeutic development is unknown. Here, we show that vestibular schwannomas from NF2 patients and human, merlin-deficient (MD) Schwann cells have high levels of endogenous tyrosine nitration, indicating production of peroxynitrite. Furthermore, scavenging or inhibiting peroxynitrite formation significantly and selectively decreased survival of human and mouse MD-Schwann cells. Using multiple complementary methods, we also found that merlin deficiency leads to a reprogramming of energy metabolism characterized by a peroxynitrite-dependent decrease of oxidative phosphorylation and increased glycolysis and glutaminolysis. In MD-Schwann cells, scavenging of peroxynitrite increased mitochondrial oxygen consumption and membrane potential, mediated by the up-regulation of the levels and activity of mitochondrial complex IV. This increase in mitochondrial activity correlated with a decrease in the glycolytic rate and glutamine dependence. This is the first demonstration of a peroxynitrite-dependent reprogramming of energy metabolism in tumor cells. Oxidized proteins constitute a novel target for therapeutic development not only for the treatment of NF2 schwannomas but also other tumors in which peroxynitrite plays a regulatory role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.