The diagnosis of periprosthetic joint infection (PJI) is challenging, often requiring multiple clinical specimens and diagnostic techniques, some with prolonged result turnaround times. Here, the diagnostic performance of the Investigational Use Only (IUO) BioFire Joint Infection (JI) Panel was compared to 16S rRNA gene-based targeted metagenomic sequencing (tMGS) applied to synovial fluid for PJI diagnosis.
Periprosthetic joint infection (PJI) following total hip and total knee arthroplasty continues to be a leading cause of re-operation and revision arthroplasty. Not only is the treatment of PJI notoriously challenging, but success rates are variable. Regardless of the surgical strategy used, successful management of PJI requires a comprehensive surgical debridement focused at eradicating the underlying biofilm followed by appropriate antimicrobial therapy. Although systemic antimicrobial delivery continues to be a cornerstone in the treatment of PJI, many surgeons have started using local antibiotics to deliver higher concentrations of antibiotics directly into the vulnerable joint and adjacent soft tissues, which often have compromised vascularity. Available evidence on the use of topical powder, bone cement, and calcium sulphate carriers for local delivery of antibiotics during the initial treatment of PJI is limited to studies that are extremely heterogeneous. There is currently no level-1 evidence to support routinely using these products. Further, appropriately powered, prospective studies are needed to quantify the safety and efficacy of antibiotic-located calcium-sulphate carriers to justify their added costs. These products should not encourage surgeons to deviate from best practice guidelines, such as those recommended during the International Consensus Meeting on Musculoskeletal Infections.
Periprosthetic joint infection (PJI) is a dreadful complication of joint replacement. Noninvasive identification of infectious pathogens has been traditionnally limited to culture-based testing of synovial fluid which has poor sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsâcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.