Different behavior has been observed for the psi torsion angle of the glycosidic linkages of D-GalNAc-Ser and D-GalNAc-Thr motifs, allowing the carbohydrate moiety to adopt a completely different orientation. In addition, the fact that the water pockets found in alpha-D-GalNAc-Thr differ from those obtained for its serine analogue could be related to the different capability that the two model glycopeptides have to structure the surrounding water. This fact could have important biological inferences (i.e., antifreeze activity).
A novel Tn antigen mimic, in which the natural underlying amino acid has been replaced by the non-natural α-methylserine analogue, is reported. This derivative exhibits a similar affinity for a natural lectin as for the natural Tn and retains the bioactive conformation observed in the Tn-containing glycopeptides with anti-MUC1 antibodies.
Synthetic oligosaccharide vaccines based on carbohydrate epitopes are currently being evaluated as potential immunotherapeutics in the treatment of cancer. In an effort to study the role that the amino acid moiety (L-serine and/or L-threonine residues) plays on the global shape of the resulting glycopeptides and on the dynamics of the carbohydrate moiety, diverse glycopeptides based on the Tn antigen have been synthesized and studied in aqueous solution by combining NMR spectroscopic experiments and molecular dynamics simulations. Our results demonstrate that although the effect of the clustering of Tn on the peptide backbone is not remarkable, it substantially modifies the dynamics, and thus, the presentation features of the carbohydrate moiety. In fact, the selected sequence has a crucial influence on both the orientation and flexibility of the sugar region. Thus, although a serine-threonine pair shows a well-defined spatial disposition of the Tn epitopes, its analogue sequence threonine-serine allows a certain degree of mobility that could favor the interaction with a diversity of receptors without a major energy penalty. These features can be explained by attending to the different conformational behavior of the glycosidic linkage of threonine-containing glycopeptides when compared with those of the serine analogues. On this basis, and taking into account that these carbohydrates interact with components of the immune system, these findings could have implications for further design of new cancer vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.