Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons leading to muscle paralysis and death. While a link between dysregulated lipid metabolism and ALS has been proposed, lipidome alterations involved in disease progression are still understudied. Using a rodent model of ALS overexpressing mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A), we performed a comparative lipidomic analysis in motor cortex and spinal cord tissues of SOD1-G93A and WT rats at asymptomatic (~70 days) and symptomatic stages (~120 days). Interestingly, lipidome alterations in motor cortex were mostly related to age than ALS. In contrast, drastic changes were observed in spinal cord of SOD1-G93A 120d group, including decreased levels of cardiolipin and a 6-fold increase in several cholesteryl esters linked to polyunsaturated fatty acids. Consistent with previous studies, our findings suggest abnormal mitochondria in motor neurons and lipid droplets accumulation in aberrant astrocytes. Although the mechanism leading to cholesteryl esters accumulation remains to be established, we postulate a hypothetical model based on neuroprotection of polyunsaturated fatty acids into lipid droplets in response to increased oxidative stress. Implicated in the pathology of other neurodegenerative diseases, cholesteryl esters appear as attractive targets for further investigations.
Dedicated to Professor Andre¬ M. Braun on the occasion of his 60th birthdayIn the present work, we study the reaction of singlet oxygen ( 1 O 2 ) with isolated DNA. Emphasis is placed on the identification and quantitative measurement of the DNA modifications that are produced by the reaction of 1 O 2 with DNA. For this purpose, calf-thymus DNA was incubated with the endoperoxide of N,N'-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide, a chemical generator of 1 O 2 . Thereafter, DNA was digested, and the resulting oxidized nucleosides were measured by means of a recently optimized high-performanceliquid-chromatography tandem-mass-spectrometry assay. It was found that, among the different DNA lesions observed, 7,8-dihydro-8-oxo-2'-deoxyguanosine is the major 1 O 2 -mediated DNA-damage product. Interestingly, cyclobutane pyrimidine dimers, oxidized pyrimidine bases, 7,8-dihydro-8-oxo-2'-deoxyadenosine, and 2,6-diamino-5-formamido-4-hydroxypyrimidine are not formed, at least not in detectable amounts, following treatment of DNA with the 1 O 2 generator. The reported results strongly suggest that the decomposition of the endoperoxide provides a pure source of 1 O 2 , and that reaction of 1 O 2 with isolated DNA induces the specific formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine.
Previous studies have demonstrated that exercise results in reactive aldehyde production and that β-alanine supplementation increases carnosine content in skeletal muscle. However, little is known about the influence exercise and β-alanine supplementation have on the formation of carnosine-aldehydes. The goal of the present study was to monitor the formation of carnosine-aldehyde adducts, following high-intensity intermittent exercise, before and after β-alanine supplementation. Vastus lateralis biopsy samples were taken from 14 cyclists, before and after a 28 day β-alanine supplementation, following 4 bouts of a 30 s all-out cycling test, and carnosine and CAR-aldehyde adducts [carnosine-acrolein, CAR-ACR (m/z 303), carnosine-4-hydroxy-2-hexenal, CAR-HHE (m/z 341) and carnosine-4-hydroxy-2-nonenal, CAR-HNE (m/z 383)] were quantified by HPLC-MS/MS. β-alanine supplementation increased muscle carnosine content by ~50% (p = 0.0001 vs. Pre-Supplementation). Interestingly, there was a significant increase in post-exercise CAR-ACR content following β-alanine supplementation (p < 0.001 vs. post-exercise before supplementation), whereas neither exercise alone nor supplementation alone increased CAR-ACR formation. These results suggest that carnosine functions as an acrolein-scavenger in skeletal muscle. Such a role would be relevant to the detoxification of this aldehyde formed during exercise, and appears to be enhanced by β-alanine supplementation. These novel findings not only have the potential of directly benefiting athletes who engage in intensive training regimens, but will also allow researchers to explore the role of muscle carnosine in detoxifying reactive aldehydes in diseases characterized by abnormal oxidative stress.
In C. crescentus, iron metabolism is mainly controlled by the transcription factor Fur (ferric uptake regulator). Iron-bound Fur represses genes related to iron uptake and can directly activate the expression of genes for iron-containing proteins. In this work, we used total RNA sequencing (RNA-seq) of wild type C. crescentus growing in minimal medium under iron limitation and a fur mutant strain to expand the known Fur regulon, and to identify novel iron-regulated genes. The RNA-seq of cultures treated with the iron chelator 2-2-dypiridyl (DP) allowed identifying 256 upregulated genes and 236 downregulated genes, being 176 and 204 newly identified, respectively. Sixteen transcription factors and seven sRNAs were upregulated in iron limitation, suggesting that the response to low iron triggers a complex regulatory network. Notably, lexA along with most of its target genes were upregulated, suggesting that DP treatment caused DNA damage, and the SOS DNA repair response was activated in a RecA-dependent manner, as confirmed by RT-qPCR. Fluorescence microscopy assays using an oxidation-sensitive dye showed that wild type cells in iron limitation and the fur mutant were under endogenous oxidative stress, and a direct measurement of cellular H2O2 showed that cells in iron-limited media present a higher amount of endogenous H2O2. A mutagenesis assay using the rpoB gene as a reporter showed that iron limitation led to an increase in the mutagenesis rate. These results showed that iron deficiency causes C. crescentus cells to suffer oxidative stress and to activate the SOS response, indicating an increase in DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.