The formation of repetitive structures (such as stripes) in nature is often consistent with a reactiondiffusion mechanism, or Turing model, of self-organizing systems. We used mouse genetics to analyze how digit patterning (an iterative digit/nondigit pattern) is generated. We showed that the progressive reduction in Hoxa13 and Hoxd11-Hoxd13 genes (hereafter referred to as distal Hox genes) from the Gli3-null background results in progressively more severe polydactyly, displaying thinner and densely packed digits. Combined with computer modeling, our results argue for a Turing-type mechanism underlying digit patterning, in which the dose of distal Hox genes modulates the digit period or wavelength. The phenotypic similarity with fish-fin endoskeleton ‡ To whom correspondence should be addressed. marian.ros@unican.es (M.A.R.); james.sharpe@crg.eu (J.S.); marie.kmita@ircm.qc.ca (M.K. Digit patterning has commonly been interpreted in the context of a morphogen gradient model (1, 2). The proposed morphogen Sonic hedgehog (Shh) emanates from the zone of polarizing activity (a cluster of mesodermal cells in the posterior border of the limb bud) and establishes a gradient with maximum levels posteriorly. Gli3 is the major mediator of Shh signaling in limb development and a genetic cause of polydactyly (2). Because Shh prevents the processing of Gli3 to its repressor form (Gli3R), the Shh gradient is translated into an inverse gradient of Gli3R (3, 4). The surprising finding that mouse Gli3 and Shh;Gli3 null mutants display identical polydactylous limb phenotypes demonstrates that an iterative series of digits can form in the absence of Shh (4, 5). Rather than supporting a gradient model, this observation is consistent with a Turing-type model for digit patterning (6-11) in which dynamic interactions between activator and inhibitor molecules determine the wavelength of the specific pattern and produce periodic patterns of spots or stripes. This pattern has been hypothesized to act as a molecular prepattern for chondrogenesis. According to one of the specific predictions of the model, the digit period or wavelength, defined as the combined thickness of both digit and interdigital region, should be subject to modulation by perturbing the correct parameter of the gene network. This should lead to autopods with digits varying in thickness and number, which has never been clearly observed to date.Although the core molecules of a self-organizing mechanism remain unknown, potential candidates for molecular modulators of the system include the Hox genes (10, 12). Distal Hoxa and Hoxd genes have a well-documented impact on digit number (13), though their specific role remains unclear, possibly due to their various interactions with the Shh-Gli3 pathway. These interactions include the mutual transcriptional regulation between Hox genes and Shh and the binding of Hoxd12 to Gli3R, resulting in a blockage of Gli3R repressor activity (14-16). In general, gain-and loss-of-function experiments suggest a positive relation betwee...
The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6−/−;Sp8+/−) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.