Type II-secreted phospholipase A 2 (type II-sPLA 2 ) is expressed in smooth muscle cells during atherosclerosis or in response to interleukin-1. The present study shows that the induction of type II-sPLA 2 gene by interleukin-1 requires activation of the NFB pathway and cytosolic PLA 2 /PPAR␥ pathway, which are both necessary to achieve the transcriptional process. Interleukin-1 induced type II-sPLA 2 gene dose-and time-dependently and increased the binding of NFB to a specific site of type II-sPLA 2 promoter. This effect was abolished by proteinase inhibitors that block the proteasome machinery and NFB nuclear translocation. Type II-sPLA 2 induction was also obtained by free arachidonic acid and was blocked by either AACOCF 3 , a specific cytosolic-PLA 2 inhibitor, PD98059, a mitogen-activated protein kinase kinase inhibitor which prevents cytosolic PLA 2 activation, or nordihydroguaiaretic acid, a lipoxygenase inhibitor, but not by the cyclooxygenase inhibitor indomethacin, suggesting a role for a lipoxygenase product. Type II-sPLA 2 induction was obtained after treatment of the cells by 15-deoxy-⌬ 12,14 -dehydroprostaglandin J 2 , carbaprostacyclin, and 9-hydroxyoctadecadienoic acid, which are ligands of peroxisome proliferator-activated receptor (PPAR) ␥, whereas PPAR␣ ligands were ineffective. Interleukin-1 as well as PPAR␥-ligands stimulated the activity of a reporter gene containing PPAR␥-binding sites in its promoter. Binding of both NFB and PPAR␥ to their promoter is required to stimulate the transcriptional process since inhibitors of each class block interleukin-1-induced type II-sPLA 2 gene activation. We therefore suggest that NFB and PPAR␥ cooperate at the enhanceosome-coactivator level to turn on transcription of the proinflammatory type II-sPLA 2 gene.
The abundant secretion of type IIA secreted phospholipase A(2) (sPLA(2)) is a major feature of the inflammatory process of atherosclerosis. sPLA(2) is crucial for the development of inflammation, as it catalyses the production of lipid mediators and induces the proliferation of smooth muscle cells. We have analysed the activation of sPLA(2) transcription by cAMP and interleukin-1beta (IL-1beta), and shown that the 500 bp region upstream of the transcription start site of the rat sPLA(2) gene is implicated in activation by synergistically acting cAMP and IL-1beta. We transiently transfected and stimulated rat smooth muscle cells in primary culture and measured the promoter activities of serial and site-directed deletion mutants of sPLA(2)-luciferase constructs. A distal region, between -488 and -157 bp, bearing a CAAT/enhancer binding protein (C/EBP)-responsive element (-242 to -223) was sufficient for cAMP/protein kinase A-mediated sPLA(2) promoter activation. We find evidence for the first time that activation of the sPLA(2) promoter by IL-1beta requires activation of an Ets-responsive element in the -184 to -180 region of the distal promoter via the Ras pathway and a nuclear factor-kappaB site at positions -141 to -131 of the proximal promoter. We also used electrophoretic mobility shift assays to identify five binding sites for the Sp1 factor; a specific inhibitor of Sp1, mithramycin A, showed that this factor is crucial for the basal activity of the sPLA(2) promoter.
A serious metabolic syndrome combining insulin-resistance, dyslipidemia, central adiposity, and peripheral lipoatrophy has arisen in HIV-infected patients receiving highly active antiretroviral therapy. The aim of this work was to examine the effects of the nonnucleoside reverse transcriptase inhibitor (NNRTI) efavirenz on adipocyte differentiation and metabolism. When induced to differentiate in the presence of efavirenz (5-50 M), 3T3-F442A preadipocytes failed to accumulate cytoplasmic triacylglycerol droplets. This phenomenon was rapidly reversible and was also readily detectable in the 3T3-L1 preadipose cell line and in primary cultures of human preadipocytes. When applied to mature 3T3-
Atherogenesis begins with the transfer of monocytes from the lumen to the intimal layer of arteries. The paracrine activity acquired by these monocytes shifts vascular smooth muscle cells from a contractile-quiescent to a secretory-proliferative phenotype, allowing them to survive and migrate in the intima. Transformed and relocated, they also start to produce and/or secrete inflammatory enzymes, converting them into inflammatory cells. Activation of the Notch pathway, a crucial determinant of cell fate, regulates some of the new features acquired by these cells as it triggers vascular smooth muscle cells to grow and inhibits their death and migration. Here, we evaluate whether and how the Notch pathway regulates the cell transition towards an inflammatory or de-differentiated state. Activation of the Notch pathway by the notch ligand Delta1, as well as overexpression of the active form of Notch3, prevents this phenomenon [initiated by interleukin 1β (IL-1β)], whereas inhibiting the Notch pathway enhances the transition. IL-1β decreases the expression of Notch3 and Notch target genes. As shown by using an IκBα-mutated form, the decrease of Notch3 signaling elements occurs subsequent to dissociation of the NF-κB complex. These results demonstrate that the Notch3 pathway is attenuated through NF-κB activation, allowing vascular smooth muscle cells to switch into an inflammatory state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.