Objective-The inflammation that occurs during the development of atherosclerosis is characterized by a massive release of sPLA2-IIA (group IIA secretory phospholipase A2) from vascular smooth muscle cells (VSMCs). We have investigated the autocrine function of sPLA2-IIA in rat aortic and human VSMCs. Methods and Results-We found that the transcription of the endogenous sPLA2-IIA gene increased by adding a cell supernatant containing human sPLA2-IIA proteins. We show that this effect was independent of the sPLA2 activity using sPLA2-IIA proteins lacking enzyme activity. Transient transfections with various sPLA2-IIA rat promoterluciferase constructs demonstrated that the C/EBP, NK-B, and Ets transcription factors are involved in the increase in sPLA2-IIA gene transcription. We also found the M-type sPLA2 receptor mRNA in VSMCs, and we showed that the sPLA2-luciferase reporter gene was induced by the specific agonist of the sPLA2 receptor, aminophenylmannopyranoside (APMP), and that this induction was mediated by the same transcription factor-binding sites. Finally, we used a sPLA2-IIA mutant unable to bind heparan-sulfate proteoglycans to show that the binding of wild-type sPLA2-IIA to proteoglycans is essential for the induction of an autocrine loop. Key Words: atherosclerosis Ⅲ autocrine/paracrine effects Ⅲ type IIA sPLA2 Ⅲ vascular smooth muscle cells P hospholipase A2 (PLA2) enzymes (EC 3.1.1.4) hydrolyze ester bonds at the sn-2 position of glyceroacylphospholipids to produce lysophospholipids and nonesterified fatty acids such as arachidonic acid (C20:4 n-6). The latter is further metabolized, contributing to the proinflammatory actions and later resolution. 1 PLA2 enzymes are present in most tissues and 4 groups are distinguished by subcellular location, molecular weight, and calcium dependence. One of these groups is secretory PLA2s (sPLA2s). The sPLA2s are extracellular low-molecular-mass (13 to 18 kDa) enzymes that have 6 to 8 disulfide bridges and require millimolar concentrations of Ca 2ϩ . 2 The isoform sPLA2-IIA is the most abundant sPLA2 in vascular smooth muscle cells (VSMCs). 3 Its synthesis is stimulated by inflammatory cytokines such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor-1␣. 4 The plasma of patients with various inflammatory diseases, particularly atherosclerosis, contains high concentrations of sPLA2-IIA. 5,6 Transgenic mice that overproduce human sPLA2-IIA have confirmed its involvement in atherosclerosis. 7 sPLA2-IIA also functions as a messenger, and this latter function can be independent of its enzymatic activity. For example, sPLA2-IIA triggers a signaling cascade in monocytic cells that has features similar to those found in other cell types and seems to be unrelated to its catalytic activity. 8,9 The recent identification of membrane proteins binding sPLA2 has highlighted the biological effects of these enzymes. Several studies have shown that sPLA2-IB and sPLA2-IIA act via specific receptors characterized in several species (M-type receptors) to play roles that are...