Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties. [BMB Reports 2016; 49(3): 149-158]
Plant synthetic biology is a fast-evolving field that employs engineering principles to empower research and bioproduction in plant systems. Nevertheless, in the whole synthetic biology landscape, plant systems lag compared to microbial and mammalian systems. When it comes to multigene delivery to plants, the predictability of the outcome is decreased since it depends on three different chassis: E.coli, Agrobacterium, and the plant species. Here we aimed to develop standardised and streamlined tools for genetic engineering in plant synthetic biology. We have devised Mobius Assembly for Plant Systems (MAPS), a user-friendly Golden Gate Assembly system for fast and easy generation of complex DNA constructs. MAPS is based on a new group of small plant binary vectors (pMAPs) that contains an origin of replication from a cryptic plasmid of Paracoccuspantotrophus. The functionality of the pMAP vectors was confirmed by transforming the MM1 cell culture, demonstrating for the first time that plant transformation is dependent on the Agrobacterium strains and plasmids; plasmid stability was highly dependent on the plasmid and bacterial strain. We made a library of new short promoters and terminators and characterised them using a high-throughput protoplast expression assay. Our results underscored the strong influence of terminators in gene expression, and they altered the strength of promoters in some combinations and indicated the presence of synergistic interactions between promoters and terminators. Overall this work will further facilitate plant synthetic biology and contribute to improving its predictability, which is challenged by combinatorial interactions among the genetic parts, vectors, and chassis.
Plant cell culture constitutes a sustainable, controllable and environmentally friendly tool to produce natural products for the pharmaceutical, cosmetic and industrial biotechnology industries. However, there are significant obstacles to the commercial synthesis of high value chemicals from plant culture including low yields, performance instability, slow plant cell growth, industrial scale-up and downstream processing. Cambial meristematic cells constitute a platform to ameliorate many of these potential problems enabling the commercial production of high value chemicals.
PDOs enhanced the color and anthocyanin content of Flame Seedless grape berries possibly due by the induction of PAL mRNA expression. The results demonstrated that PDOs can be used to improve fruit quality aspects such as berry skin color.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.