1. Bobcats Lynx rufus and coyotes Canis latrans are two widespread mesopredators with a complex history of sympatry. The competitive interactions between these species are of interest to biologists due to the furbearer status of bobcats, the recent range expansion of coyotes, and the recolonisation of several parts of North America by bobcats following their extirpation. Although studies exploring the dynamics and competition between bobcats and coyotes span decades, there is a lack of understanding regarding what factors influence exploitative or interference competition, and what methodologies are conducive to identifying these types of competition. 2. We gathered a comprehensive list of research papers (n = 41) exploring bobcat-coyote competitive interactions in North America. From them, we collected the following: study site characteristics, number and types of research methods, number and types of metrics explored, history of sympatry of the two species at the study location, presence of apex predators, and documentation of interference and/or exploitative competition. 3. Using generalised linear models, we determined that interference competition between bobcats and coyotes was observed primarily in open habitat. However, habitat heterogeneity, the number of research methods and metrics used, presence of an apex predator, and history of sympatry could not be used to predict the occurrence of interference competition. Studies that included diet overlap were less likely to observe interference competition than studies that used other metrics to infer competition. 4. Competitive interactions between coyotes and bobcats are largely a function of prey availability. Our findings suggest that habitat type may be a surrogate for prey availability, which many researchers mention, but do not explicitly measure. Future studies investigating bobcat-coyote interactions should include the quantification of prey densities to gain a more comprehensive understanding of the system at large, and should avoid using solely diet or habitat overlap as metrics to assess competition.
Terrestrial carnivores are among the most imperiled species worldwide, yet some species are resilient and are recovering in human-dominated landscapes after decades or centuries of absence. Bobcat (Lynx rufus) populations were extirpated from much of Midwestern US in the mid-1800’s, and are currently expanding and recolonizing their former range. In this study, we investigated multi-scale habitat selection for Ohio’s expanding bobcat population, and examined habitat connectivity in order to evaluate the conduits for dispersal statewide. We used citizen observations collected between 1978 and 2019 and logistic regression to evaluate population-level habitat selection, and GPS telemetry data for 20 individuals collected between 2012 and 2014 and a distribution-weighted exponential Resource Selection Function to evaluate individual-level habitat selection within home ranges. At the population level, bobcats selected for higher amounts of forest and pasture (at a 50 km2 scale) and herbaceous vegetation (at 15–50 50 km2 scales), thus overall heterogeneous forested habitat. At individual (home range) level, bobcats selected for forested habitats with low road density and farther away from high traffic roads; they also showed weak selection for open habitat at the home range level. Male home ranges were significantly greater than female home ranges. Lastly, we used the population-level spatial outputs (i.e. habitat suitability map) to parameterize habitat connectivity models using circuit theory in the program Circuitscape. We tested three relationships between habitat suitability and resistance to movement and used a subset of data on potential dispersing individuals to evaluate which relationship performed best. All three relationships performed almost equally well, and we calculated a weighted averaged connectivity map as our final map. Habitat was highly permeable to movements between core areas of two genetically distinct subpopulations located in southeastern Ohio. We also identified potential dispersal corridors from the core areas to other regions of Ohio dominated by agriculture and suburban development via forested riparian corridors. Overall, our analysis offers new information on habitat selection and connectivity in a rebounding felid population and offers important ecological information for wildlife management strategies. We recommend that the suitability and connectivity models should be periodically updated until the population reaches an equilibrium, and be integrated with data from neighboring states for a comprehensive assessment of a conservation success story.
There are 13 files that provide location, rainfall, habitat, vegetation, and animal data from the UHURU experiment. There are several column headings that identify the scale and location of sampling, appearing in many of the 13 datasets that follow.
The Eurasian lynx (Lynx lynx) faces population declines in the western part of its range, and its ecological requirements are poorly understood in the eastern part of its range. The Romanian Carpathians harbor an intact large carnivore community, in which lynx co-occur with bears (Ursus arctos), wolves (Canis lupus), and humans (Homo sapiens), with which they potentially compete for ungulate prey. We provide a science-based estimate of lynx density and habitat use, combining non-invasive monitoring techniques (camera trapping) with spatially explicit capture-recapture models (SECR) in the Southern Carpathians of Romania. We sampled 59 and 76 trap stations during two monitoring sessions (winter and autumn), identified at least 30 individuals, from which we reconstructed encounter histories for 23 individuals. SECR modeling resulted in similar density estimates between winter and autumn (1.6 ± 0.39 SE and 1.7 ± 0.38 SE lynx/100 km2, respectively), but the cumulative number of lynx detected reached the asymptote faster during autumn, suggesting that monitoring prior to the mating season is preferable. Density varied within and across sessions with topography (slope), percent forest cover, and landscape heterogeneity (i.e., agricultural mosaic). Density hotspots shifted between low-altitude agricultural mosaic during winter and more rugged, mid-altitude forest stands during autumn. Estimated densities of lynx in the Romanian Carpathians are higher than those reported in the Alps or Slovak Carpathians, highlighting the importance of this population as a source both for natural recolonization and recent reintroduction programs. When used in an SECR framework, camera trapping is an efficient method for assessing spatial and temporal variation in lynx population density in the remote Romanian Carpathians. We recommend this methodology for improving lynx population estimates and to monitor lynx population trends nationwide.
We investigated whether previously documented variation among populations in availability of dietary phosphorus (P) is linked to heterogeneity in growth rate of the New Zealand freshwater snail Potamopyrgus antipodarum on a P-limited diet. We chose this system because P. antipodarum inhabits water bodies that vary in P availability and because P. antipodarum growth rate varies considerably in response to low P. We quantified specific growth rate and alkaline phosphatase (AP) expression in a diverse array of juvenile P. antipodarum fed high vs. low-P diets. We found strong associations between P content of epilithon in the source lake and P. antipodarum growth rate on high vs. low-P diets, with snails collected from lakes with relatively low-P epilithon showing the greatest increase in growth rate on the high-P relative to low-P diet. We also found substantial intraspecific variation in growth response to P limitation. Expression of AP also varied among lineages and was negatively associated with C: P of lake epilithon but did not explain the relationship between C: P in the lake of origin and sensitivity to P limitation. Together, our results demonstrate a strong signature of the P environment in the lake of origin on how this snail responds to P limitation as well as preliminary evidence for intraspecific variation of AP expression in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.