Under conditions of stress, such as limited growth factor signaling, translation is inhibited by the action of 4E-BP and PDCD4. These proteins, through inhibition of eIF4E and eIF4A, respectively, impair cap-dependent translation. Under stress conditions FOXO transcription factors activate 4E-BP expression amplifying the repression. Here we show that Drosophila FOXO binds the PDCD4 promoter and stimulates the transcription of PDCD4 in response to stress. We have shown previously that the 5′ UTR of the Drosophila insulin-like receptor (dINR) supports cap-independent translation that is resistant to 4E-BP. Using hippuristanol, an eIF4A inhibitor, we find that translation of dINR UTR containing transcripts are also resistant to eIF4A inhibition. In addition, the murine insulin receptor and insulin-like growth factor receptor 5′ UTRs support cap-independent translation and have a similar resistance to hippuristanol. This resistance to inhibition of eIF4E and eIF4A indicates a conserved strategy to allow translation of growth factor receptors under stress conditions.DOI:
http://dx.doi.org/10.7554/eLife.00542.001
Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.