Diuron is a herbicide used in agricultural and urban settings and also as an antifouling agent. Recent studies have indicated sublethal responses of diuron in the endocrine system of fish and amphibians. Given the potential of climate change to also alter fish endocrinology, the combination of environmental stressors with diuron may contribute to its sublethal toxicity. In this study, the effects of temperature and salinity on thyroid targets of diuron were assessed in juveniles of the estuarine fish Menidia beryllina under different conditions of salinity (10 and 20‰) and temperature (10 and 20 °C). Environmentally relevant concentrations of diuron affected the growth, and the higher temperature reduced the condition factor of animals. Increased levels of T3 were observed in fish from all treatments, and at 10 °C, T4 levels were augmented at 10‰ but reduced at 20‰. Increased gene expression of deiodinases at 20‰ in both temperatures suggests the influence of salinity on the regulation of hormone imbalance via deiodination pathway activation. Decreased transcripts of thyroid and growth hormone receptors were also observed following diuron treatment. These results indicate that changes in environmental stressors may have significant impacts on the ecological risk of diuron in estuarine fish.
Quantum dots (QDs) have unique properties, which make them valuable in some commercial technologies. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.