Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are essential for remodeling the chromatin and driving the initial wave of zygotic gene expression. In Drosophila melanogaster, the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal-to-zygotic transition (MZT). However, it was unknown whether additional pioneer factors were required for this transition. We identified an additional maternally encoded factor required for development through the MZT, GAGA Factor (GAF). GAF is necessary to activate widespread zygotic transcription and to remodel the chromatin accessibility landscape. We demonstrated that Zelda preferentially controls expression of the earliest transcribed genes, while genes expressed during widespread activation are predominantly dependent on GAF. Thus, progression through the MZT requires coordination of multiple pioneer-like factors, and we propose that as development proceeds control is gradually transferred from Zelda to GAF.
To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood. In this study, taking advantage of the naturally synchronized mitoses of Drosophila early embryos, we provide evidence that GAGA pioneer factor (GAF) acts as a stable mitotic bookmarker during zygotic genome activation. We show that, during mitosis, GAF remains associated to a large fraction of its interphase targets, including at cis-regulatory sequences of key developmental genes with both active and repressive chromatin signatures. GAF mitotic targets are globally accessible during mitosis and are bookmarked via histone acetylation (H4K8ac). By monitoring the kinetics of transcriptional activation in living embryos, we report that GAF binding establishes competence for rapid activation upon mitotic exit.
Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are required for remodeling the chromatin and driving the initial wave of zygotic gene expression. In Drosophila melanogaster, the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal- to-zygotic transition (MZT). However, it was unknown whether additional pioneer factors were necessary for this transition. We identified an additional maternally encoded factor required for development through the MZT, GAGA Factor (GAF). GAF is needed to activate widespread zygotic transcription and to remodel the chromatin accessibility landscape. We demonstrated that Zelda preferentially controls expression of the earliest transcribed genes, while genes expressed during widespread activation are predominantly dependent on GAF. Thus, progression through the MZT requires coordination of multiple pioneer factors, and we propose that as development proceeds transcriptional control is gradually transferred from Zelda to GAF.
A two-tiered system of chromatin structure ensures robust gene expression
Meier-Gorlin syndrome is a rare recessive disorder characterized by a number of distinct tissue-specific developmental defects. Genes encoding members of the origin recognition complex (ORC) and additional proteins essential for DNA replication (CDC6, CDT1, GMNN, CDC45, MCM5, and DONSON) are mutated in individuals diagnosed with MGS. The essential role of ORC is to license origins during the G1 phase of the cell cycle, but ORC has also been implicated in several nonreplicative functions. Because of its essential role in DNA replication, ORC is required for every cell division during development. Thus, it is unclear how the Meier-Gorlin syndrome mutations in genes encoding ORC lead to the tissue-specific defects associated with the disease. To begin to address these issues, we used Cas9-mediated genome engineering to generate a Drosophila melanogaster model of individuals carrying a specific Meier-Gorlin syndrome mutation in ORC4 along with control strains. Together these strains provide the first metazoan model for an MGS mutation in which the mutation was engineered at the endogenous locus along with precisely defined control strains. Flies homozygous for the engineered MGS allele reach adulthood, but with several tissue-specific defects. Genetic analysis revealed that this Orc4 allele was a hypomorph. Mutant females were sterile, and phenotypic analyses suggested that defects in DNA replication was an underlying cause. By leveraging the well-studied Drosophila system, we provide evidence that a disease-causing mutation in Orc4 disrupts DNA replication, and we propose that in individuals with MGS defects arise preferentially in tissues with a high-replication demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.