Thermoelectric materials convert thermal energy into electrical energy and can be a solution for the global climate crisis. For advanced thermoelectric applications, the conversion efficiency has to be high, motivating the search for materials with a high average thermoelectric figure of merit. To achieve such large thermoelectric figures of merit, the electronic properties must be maximized, and the thermal transport must be minimized over a wide temperature range. The chalcopyrite CuGaTe2 exhibits promising electronic properties but suffers from poor thermoelectric performance due to its high lattice thermal conductivity. In the present study, we perform compressive sensing lattice dynamics (CSLD) and ShengBTE calculations, which suggest that the high room temperature lattice thermal conductivity is a result of high longitudinal group velocities. To effectively reduce the thermal conductivity, we introduce lithium into three variants of CuGaTe2: pristine, Sb-doped, and Ag-doped. All compositions exhibited a significant reduction in the lattice thermal conductivity with the inclusion of lithium without any compromise to the electronic properties. By comparing the elastic moduli, we demonstrate that the reduction in the lattice thermal conductivity is to some extent the result of phonon softening. The low thermal conductivity and high power factor in Cu0.90Li0.05Ag0.05GaTe2 lead to a 56% increase in the average zT compared to the pristine sample. Due to the low cost of lithium, this approach can be adapted to chalcopyrite compounds and other thermoelectric systems to develop sustainable and affordable applications for waste heat recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.