Temperature is hypothesized to contribute to increased pathogenicity and virulence of many marine diseases. The sea louse (Lepeophtheirus salmonis) is an ectoparasite of salmonids that exhibits strong life-history plasticity in response to temperature; however, the effect of temperature on the epidemiology of this parasite has not been rigorously examined. We used matrix population modelling to examine the influence of temperature on demographic parameters of sea lice parasitizing farmed salmon. Demographically-stochastic population projection matrices were created using parameters from the existing literature on vital rates of sea lice at different fixed temperatures and yearly temperature profiles. In addition, we quantified the effectiveness of a single stage-specific control applied at different times during a year with seasonal temperature changes. We found that the epidemic potential of sea lice increased with temperature due to a decrease in generation time and an increase in the net reproductive rate. In addition, mate limitation constrained population growth more at low temperatures than at high temperatures. Our model predicts that control measures targeting preadults and chalimus are most effective regardless of the temperature. The predictions from this model suggest that temperature can dramatically change vital rates of sea lice and can increase population growth. The results of this study suggest that sea surface temperatures should be considered when choosing salmon farm sites and designing management plans to control sea louse infestations. More broadly, this study demonstrates the utility of matrix population modelling for epidemiological studies.
Salmon pancreas disease virus (SPDV) also referred to as salmonid alphavirus (SAV) is a virus causing pancreas disease in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss). Although the virus causes an economically important disease, relatively few full-length genome sequences of SAV strains are currently available. Here, we report full-length genome sequences of nine SAV3 strains from sites farming Atlantic salmon geographically spread along the Norwegian coastline. The virus genomes were sequenced directly from infected heart tissue, to avoid culture selection bias. Sequence analysis confirmed a high level of sequence identity within SAV3 strains, with a mean nucleotide diversity of 0.11 %. Sequence divergence was highest in 6K and E2, while lowest in the capsid protein and the non-structural proteins (nsP4 and nsP2). This study reports for the first time that numerous defective viruses containing genome deletions are generated during natural infection with SAV. Deletions occurred in all virus strains and were not distributed randomly throughout the genome but instead tended to aggregate in certain areas. We suggest imprecise homologous recombination as an explanation for generation of defective viruses with genome deletions. The presence of such viruses, provides a possible explanation for the difficulties in isolating SAV in cell culture. Primary virus isolation was successfully achieved for only two of eight strains, despite extensive attempts using three different cell lines. Both SAV isolates were easily propagated further and concomitant viral deletion mutants present in clinically infected heart tissue were maintained following serial passage in CHH-1 cells.
The aim of this study was to model sea lice levels and the effect on reproduction by a stochastic simulation model and to evaluate the uncertainty of lice estimates based upon counts. Two empirical data sets were examined to parameterize the models. An overall fit of the data to the Poisson distribution was found and thus was used as the base of the stochastic models. In the model, salmon lice reproduction is not linear with the number of adult females and at low lice loads a smaller proportion of the adult female lice will reproduce. Depending on the variance structure, it was estimated that between 40% and 60% of the adult female lice will reproduce at an abundance of 0.5 adult females per fish. Lice counts, especially when examining few fish at low lice loads, are uncertain and at a true abundance of 0.1 one may count between 0 and 5 lice when examining 10 fish. Understanding the dynamics of sea lice reproduction is a key factor in the development of sustainable control strategies.
Increasing usage of non-medicinal methods (NMMs) to control sea louse infestations on salmon farms has raised questions about whether sea lice may be able to evolve tolerance of NMMs. Of particular concern is the potential for sea lice to evolve freshwater tolerance as a result of freshwater treatments. Wild trout and some juvenile salmonids swim into freshwater to control infestations and regain ionic balance after disruption by sea lice; freshwater tolerance would compromise this potentially adaptive behavior. Here we evaluated the potential for freshwater tolerance to evolve in the sea louse Lepeophtheirus salmonis. When exposed to low-salinity water, parasitic stages of sea lice are able to osmoregulate through the host, while larval planktonic stages are not. Transcriptomic work suggests that sea lice mount a costly polygenic stress response when exposed to brackish water. The population structure of sea lice is panmictic in both the Pacific and Atlantic, making it conducive to rapid evolutionary responses. It is unknown how much heritable genetic variation these panmictic populations have for freshwater treatments. While usage of freshwater treatments on wellboats is increasing, it is unclear whether the freshwater itself is a strong selective force; during the freshwater exposure, sea lice can die from physical disruption during pumping and filtration on the wellboat. Future studies are advised to quantify the heritable variation in freshwater tolerance in sea louse populations, characterize mechanisms for freshwater tolerance in planktonic and attached sea lice, and assess the risk of freshwater tolerance evolution under different management strategies.
This retrospective descriptive study estimates cage‐level mortality distributions after six immediate delousing methods: thermal, mechanical, hydrogen peroxide, medicinal, freshwater and combination of medicinal treatments. We investigated mortality patterns associated with 4 644 delousing treatment of 1 837 cohorts of farmed Atlantic salmon (Salmo salar) stocked in sea along the Norwegian coast between 2014 and 2017. The mortality is expressed as mortality rates. We found distributions of delta mortality rate within 1, 7 and 14 days after all six delousing treatments, using mortality rate within 7 days before treatments as baseline. The results show that we can expect increased mortality rates after all six delousing methods. The median delta mortality rates after thermal and mechanical delousing are 5.4 and 6.3 times higher than medicinal treatment, respectively, for the 2017 year‐class. There is a reduction in the delta median mortality for thermal and freshwater delousing from 2015 to 2019. There is a wide variability in the mortality rates, in particular for thermal delousing. Our results suggest that the variability in delta mortality for thermal delousing has been reduced from the 2014 to 2017 year‐class, indicating an improvement of the technique. However, a significant increase in the number of thermal treatments from 14 in 2015 to 738 in 2018 probably contributes to the overall increased mortality in Norwegian salmon farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.