It has long been assumed that the elongated rostra (the saws) of sawsharks (family: Pristiophoridae) and sawfish (family: Pristidae) serve a similar function. Recent behavioural and anatomical studies have shed light on the dual function of the pristid rostrum in mechanosensory and electrosensory prey detection and prey manipulation. Here, the authors examine the distributions of the mechanosensory lateral line canals and electrosensory ampullae of Lorenzini in the southern sawshark, Pristiophorus nudipinnis and the longnose sawshark, Pristiophorus cirratus. In both species, the receptive fields of the mechano‐ and electrosensory systems extend the full length of the rostrum indicating that the sawshark rostrum serves a sensory function. Interestingly, despite recent findings suggesting they feed at different trophic levels, minimal interspecific variation between the two species was recorded. Nonetheless, compared to pristids, the pristiophorid rostrum possesses a reduced mechanosensory sampling field but higher electrosensory resolution, which suggests that pristiophorids may not use their rostrums to disable large prey like pristids do.
The arrangement of the electroreceptive ampullary system and closely related mechanoreceptive lateral line canal system was investigated in the epaulette shark, Hemiscyllium ocellatum. The lateral line canals form an elaborate network across the head and are continuously punctuated by pores. Ampullary pores are distributed in eleven distinct pore fields, and associated ampullary bulbs are aggregated in five independent ampullary clusters on either side of the head. Pores are primarily concentrated around the mouth and across the snout of the animal. We provide the anatomical basis for future behavioural studies on electroreception and mechanoreception in epaulette sharks, as well as supporting evidence that the electroreceptive ampullary system is specialised to provide behaviourally relevant stimuli. In addition, we describe ampullary pores distributed as far posteriorly as the dorsal fin and thus reject the assumption that ampullary pores are restricted to the cephalic region in sharks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.