SARS‐CoV‐2 virus has infected nearly 300 M people worldwide and has been associated with over 6 M deaths by March 2022. Since the virus emergence in December 2019 in Wuhan, several new mutations have been described. The World Health Organization has developed a working name for these emerging variants according to their impact on the worldwide population. In this context a high alert has been paid to variants of concern (VOC) due to their high infectiousness and transmissibility patterns. The most recent VOC, Omicron (B.1.1.529), has become dominant in the shortest time ever and has placed Europe under an overwhelming and unprecedented number of new cases. This variant has numerous mutations in regions that are associated with higher transmissibility, stronger viral binding, affinity and antibody escape. Moreover, the mutations and deletions present in the spike protein suggest that the SARS‐CoV‐2 specific attachment inhibitors may not be the best option for Omicron therapy. Omicron is the dominant variant circulating worldwide and, at the end of February 2022, it was responsible for nearly all sequences reported to GISAID. Omicron is made up of several sublineages, where the most common are BA.1 and BA.2 (or Nextstrain clade 21K and 21L, respectively). At a global level, it is possible to say that the proportion of BA.2 has been increasing relative to BA.1 and in some countries it has been replacing it at high rates. In order to better assess the Omicron effectiveness on antibody escape, spread and infectious ability it is of the highest relevance to maintain a worldwide tight surveillance. Even though this variant has been associated with a lower death rate, it is important to highlight that the number of people becoming infected is concerning and that further unpredictable mutations may emerge as the number of infected people rises.
The integration of photovoltaic (PV) elements in urban environments is gaining visibility due to the current interest in developing energetically self-sustainable buildings. Luminescent solar concentrators (LSCs) may be seen as a solution to convert urban elements, such as façades and windows, into energy-generation units for zero-energy buildings. Moreover, LSCs are able to reduce the mismatch between the AM1.5G spectrum and the PV cells absorption. In this work, we report optically active coatings for LSCs based on lanthanide ions (Ln3+ = Eu3+, Tb3+)-doped surface functionalized ionosilicas (ISs) embedded in poly(methyl methacrylate) (PMMA). These new visible-emitting films exhibit large Stokes-shift, enabling the production of transparent coatings with negligible self-absorption and large molar extinction coefficient and brightness values (~2 × 105 and ~104 M−1∙cm−1, respectively) analogous to that of orange/red-emitting organic dyes. LSCs showed great potential for efficient and environmentally resistant devices, with optical conversion efficiency values of ~0.27% and ~0.34%, respectively.
A sustainable use of energy in buildings demands energy‐efficient windows. A new design concept for electrochromic (EC) smart windows, easy to implement at the industrial level, is introduced here. It enables simultaneous control of visible and near‐infrared (NIR) solar radiation, thus contributing to reduce heating and cooling loads especially in buildings located in areas experiencing wide daily temperature ranges. The EC device comprises amorphous indium zinc oxide, a conducting oxide transparent in the visible and NIR spectral regions, as nonactive layer, and a sol–gel protonic ionic liquid‐doped di‐ureasil electrolyte displaying high transparency and proton conductivity. The device offers three voltage‐operated modes: bright hot (+3.0 V: transmittances of 70/83% at 555/1000 nm), semi‐bright warm (−2.0 V: transmittances of 37/35% at 555/1000 nm), and dark cold (−2.5 V: transmittances of 6/4% at 555/1000 nm). Its main figures of merit are: high switching efficiency (transmittance variations of 64/79% at 555/1000 nm), high optical density modulation (1.1/1.3 at 555/1000 nm), high optical contrast ratio in the visible region (lightness variation of ≈43), good cycling stability, and unprecedented coloration efficiency (−12538/−14818 cm2 C−1 and +2901/+3428 cm2 C−1 at 555/1000 nm), outstanding optical memory (transmittance variation loss of only 24% more than 4 months after coloration), and self‐healing ability following mechanical stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.