The Rac1 guanosine triphosphatase (GTPase) has been implicated in multiple cellular functions, including actin dynamics, proliferation, apoptosis, adhesion, and migration resulting from signaling by multiple receptors, including the B cell antigen receptor (BCR). We used conditional gene targeting to generate mice with specific Rac1 deficiency in the B cell lineage. In the absence of both Rac1 and the highly related Rac2, B cell development was almost completely blocked. Both GTPases were required to transduce BCR signals leading to proliferation, survival and up-regulation of BAFF-R, a receptor for BAFF, a key survival molecule required for B cell development and maintenance.
Upon maturation, dendritic cells (DCs) acquire the unique ability to activate naïve T cells. We used time-lapse video microscopy and two-photon imaging of intact lymph nodes to show that after establishing initial contact between their dendrites and naïve T lymphocytes, mature DCs migrate toward the contacted lymphocytes. Subsequently, the DCs tightly entrap the T cells within a complex net of membrane extensions. The Rho family guanosine triphosphatases Rac1 and Rac2 but not Rho itself control the formation of dendrites in mature DCs, their polarized short-range migration toward T cells, and T cell priming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.