Abstract.A new system for continuous, highly resolved oceanic and atmospheric measurements of N 2 O, CO and CO 2 is described. The system is based upon off-axis integrated cavity output spectroscopy (OA-ICOS) and a nondispersive infrared analyzer (NDIR), both coupled to a Weiss-type equilibrator. Performance of the combined setup was evaluated by testing its precision, accuracy, long-term stability, linearity and response time. Furthermore, the setup was tested during two oceanographic campaigns in the equatorial Atlantic Ocean in order to explore its potential for autonomous deployment onboard voluntary observing ships (VOS). Improved equilibrator response times for N 2 O (2.5 min) and CO (45 min) were achieved in comparison to response times from similar chamber designs used by previous studies. High stability of the OA-ICOS analyzer was demonstrated by low optimal integration times of 2 and 4 min for N 2 O and CO respectively, as well as detection limits of < 40 ppt and precision better than 0.3 ppb Hz −1/2 . Results from a direct comparison of the method presented here and well-established discrete methods for oceanic N 2 O and CO 2 measurements showed very good consistency. The favorable agreement between underway atmospheric N 2 O, CO and CO 2 measurements and monthly means at Ascension Island (7.96 • S 14.4 • W) further suggests a reliable operation of the underway setup in the field. The potential of the system as an improved platform for measurements of trace gases was explored by using continuous N 2 O and CO 2 data to characterize the development of the seasonal equatorial upwelling in the Atlantic Ocean during two R/V Maria S. Merian cruises. A similar record of high-resolution CO measurements was simultaneously obtained, offering, for the first time, the possibility of a comprehensive view of the distribution and emissions of these climate-relevant gases in the area studied. The relatively simple underway N 2 O/CO/CO 2 setup is suitable for long-term deployment onboard research and commercial vessels although potential sources of drift, such as cavity temperature, and further technical improvements towards automation, still need to be addressed.
A new system for continuous, highly-resolved oceanic and atmospheric measurements of N2O, CO and CO2 is described. The system is based upon off-axis integrated cavity output spectroscopy (OA-ICOS) and a non-dispersive infrared analyzer (NDIR) both coupled to a Weiss-type equilibrator. Performance of the combined setup was evaluated by testing its precision, accuracy, long-term stability, linearity and response time. Furthermore, the setup was tested during two oceanographic campaigns in the equatorial Atlantic Ocean in order to explore its potential for autonomous deployment onboard voluntary observing ships (VOS). Improved equilibrator response times for N2O (2.5 min) and CO (45 min) were achieved in comparison to response times from similar chamber designs used by previous studies. High stability of the OA-ICOS analyzer was demonstrated by low optimal integration times of 2 and 4 min for N2O and CO respectively, as well as detection limits of < 40 ppt and precision better than 0.3 ppb Hz−1/2. Results from a direct comparison of the method presented here and well-established discrete methods for oceanic N2O and CO2 measurements showed very good consistency. The favorable agreement between underway atmospheric N2O, CO and CO2 measurements and monthly means at Ascension Island (7.96° S 14.4° W) further suggests a reliable operation of the underway setup in the field. The potential of the system as an improved platform for measurements of trace gases was explored by using continuous N2O and CO2 data to characterize the development of the seasonal equatorial upwelling in the Atlantic Ocean during two R/V Maria S. Merian cruises. A similar record of high-resolution CO measurements was simultaneously obtained offering for the first time the possibility of a comprehensive view on the distribution and emissions of these climate relevant gases on the area. The relatively simple underway N2O/CO/CO2 setup is suitable for long-term deployment on board of research and commercial vessels although potential sources of drift such as cavity temperature and further technical improvements towards automation still need to be addressed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.