DNA from Ehrlich ascites tumor (EAT) cells and from human placenta was examined for covalent bonds between hydroxy amino acid residues in peptides and nucleotide phosphate groups. The residual proteinaceous material in highly purified DNA was radiolabelled with 125Iodine and the linking-groups between peptides and nucleotides released by combined protease and nuclease treatment were investigated with respect to their chemical and enzymatic stabilities. The residual nucleotide(s)-peptide(s) fraction from DNA isolated after prolonged alkaline cell lysis and phenol extraction contains mainly alkali and acid-stable but phosphodiesterase-sensitive peptide-nucleotide complexes which indicates phosphodiesters between tyrosyl residues in peptides and nucleotide phosphates. In contrast, the linking-group fraction from DNA isolated under native conditions contains additional peptide components. (a) Phospho-peptides that co-purify with DNA but that are not covalently bound to nucleotides. (b) A fraction of peptides that is released from nucleotides by alkali in a time and concentration-dependent reaction. Evidence is presented indicating that the latter fraction involves phospho-triesters between hydroxy amino acid residues in peptides and internucleotide phosphates. The phosphodiesters between hydroxy amino acids and nucleotide phosphates representing the predominant class of peptide-nucleotide complexes in alkali-denatured DNA are most likely side products of peptide-nucleotide phospho-triester hydrolysis.
A fraction of DNA fragments of highly purified and completely unfolded eukaryotic DNA inevitably remains associated with chemically resistant nonhistone DNA-polypeptide complexes. This fraction can be isolated by nitrocellulose filtration because the polypeptide-associated DNA fragments are retained on nitrocellulose filters while bulk DNA passes through the filters. The fraction of AluI-fragmented DNA from human placenta retained on filters as a result of the binding factors (R-DNA, approximately 12%) represents a subset of genomic sequences with a sequence complexity different from unfractionated DNA and DNA recovered in the filtrate (F-DNA). DNA sequences prevalent in the retained fraction were detected by differential plaque hybridization of a recombinant lambda gt10 library with radiolabeled F- and R-DNA fractions. Several recombinant phages showing much stronger hybridization signals with the R-DNA probe than with the F-DNA probe were selected, plaque-purified and analyzed. Analysis of the inserts of such clones showed that repetitive DNA sequences of the alphoid dimeric and tetrameric family, satellite III and satellite III-like sequences are highly enriched in the retained fraction, which indicates that these sequences specifically attract the polypeptides involved in the tightly bound and resistant complexes. This property of repetitive sequences is of interest since tandemly repetitive sequences have been suggested to code for locus-specific fixation and stabilization of the chromatin fiber in the cell nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.