The spatial continuity of facies is one of the key factors controlling flow in reservoir models. Traditional pixel-based methods such as truncated Gaussian random fields and indicator simulation are based on only two-point statistics, which is insufficient to capture complex facies structures. Current methods for multi-point statistics either lack a consistent statistical model specification or are too computer intensive to be applicable. We propose a Markov mesh model based on generalized linear models for geological facies modeling. The approach defines a consistent statistical model that is facilitated by efficient estimation of model parameters and generation of realizations. Our presentation includes a formulation of the general framework, model specifications in two and three dimensions, and details on how the parameters can be estimated from a training image. We illustrate the method using multiple training images, including binary and trinary images and simulations in two and three dimensions. We also do a thorough comparison to the snesim approach. We find that the current model formulation is applicable for multiple training images and compares favorably to the snesim approach in our test examples. The method is highly memory efficient.
A multigrid Markov mesh model for geological facies is formulated by defining a hierarchy of nested grids and defining a Markov mesh model for each of these grids. The facies probabilities in the Markov mesh models are formulated as generalized linear models that combine functions of the grid values in a sequential neighborhood. The parameters in the generalized linear model for each grid are estimated from the training image. During simulation, the coarse patterns are first laid out, and by simulating increasingly finer grids we are able to recreate patterns at different scales. The method is applied to several tests cases and results are compared to the training image and the results of a commercially available snesim algorithm. In each test case, simulation results are compared qualitatively by visual inspection, and quantitatively by using volume fractions, and an upscaled permeability tensor. When compared to the training image, the method produces results that only have a few percent deviation from the values of the training image. When compared with the snesim algorithm the results in general have the same quality. The largest computational cost in the multigrid Markov mesh is the estimation of model parameters from the training image. This is of comparable CPU time to that of creating one snesim realization. The simulation of one realization is typically ten times faster than the estimation.
Weather-related risk makes the insurance industry inevitably concerned with climate and climate change. Buildings hit by pluvial flooding is a key manifestation of this risk, giving rise to compensations of the induced physical damages and business interruptions.In this work, we establish a nationwide, building-specific risk score for water damage associated with pluvial flooding in Norway. We fit a generalized additive model that relates the number of water damages to a wide range of explanatory variables that can be categorized into building attributes, climatological variables and topographical characteristics.The model assigns a risk score to every location in Norway, based on local topography and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.