Tactile hands-only training is particularly important for medical palpation. Generally, equipment for palpation training is expensive, static, or provides too few study cases to practice on. We have therefore developed a novel haptic surface concept for palpation training, using ferrogranular jamming. The concept’s design consists of a tactile field spanning 260 x 160 mm, and uses ferromagnetic granules to alter shape, position, and hardness of palpable irregularities. Granules are enclosed in a compliant vacuum-sealed chamber connected to a pneumatic system. A variety of geometric shapes (output) can be obtained by manipulating and arranging granules with permanent magnets. The tactile hardness of the palpable output can be controlled by adjusting the chamber’s vacuum level. A psychophysical experiment (N = 28) investigated how people interact with the palpable surface and evaluated the proposed concept. Untrained participants characterized irregularities with different position, form, and hardness through palpation, and their performance was evaluated. A baseline (no irregularity) was compared to three irregularity conditions: two circular shapes with different hardness (Hard Lump and Soft Lump), and an Annulus shape. 100% of participants correctly identified an irregularity in the three irregularity conditions, whereas 78.6% correctly identified baseline. Overall agreement between participants was high (κ= 0.723). The Intersection over Union (IoU) for participants sketched outline over the actual shape was IoU Mdn = 79.3% for Soft Lump, IoU Mdn = 68.8% for Annulus, and IoU Mdn = 76.7% for Hard Lump. The distance from actual to drawn center was Mdn = 6.4 mm (Soft Lump), Mdn = 5.3 mm (Annulus), and Mdn = 7.4 mm (Hard Lump), which are small distances compared to the size of the field. The participants subjectively evaluated Soft Lump to be significantly softer than Hard Lump and Annulus. Moreover, 71% of participants thought they improved their palpation skills throughout the experiment. Together, these results show that the concept can render irregularities with different position, form, and hardness, and that users are able to locate and characterize these through palpation. Participants experienced an improvement in palpation skills throughout the experiment, which indicates the concepts feasibility as a palpation training device.
Measuring diameter change in flexible tubular structures embedded in opaque material is challenging. In this article, we present a soft braided coil embedded in an elastomer tube as a method to continuously measure such a change in diameter. By measuring the inductance change in the braided coil, we estimate the instantaneous diameter with a simple inductance model. In applying this method, we demonstrate that diameter waves in a vascular phantom, a model of a radial artery embedded in a viscoelastic wrist structure, can be recorded continuously. Four sensors were made, and their ability to measure physiologically relevant simulated pulse waves was assessed. Several pressure pulse profiles were generated using a precision digital pump. Inductance of the coil was measured simultaneously as the change in diameter was recorded using an optical laser/mirror deflection measurement. One sensor was then embedded in a vascular phantom model of the human wrist. The diameter of the simulated radial artery was recorded via ultrasound and estimated from coil inductance measurements. The diameter estimates from the inductance model corresponded well with the comparator in both experimental setups. We demonstrate that our method is a viable alternative to ultrasound in recording diameter waves in artery models. This opens opportunities in empirical investigations of physiologically interesting fluid-structure interaction. This method can provide new ability to measure diameter changes in tubular systems where access is obstructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.