LTE-based satellite systems in LEO constellations are a promising solution for extending broadband coverage to areas not connected to a terrestrial infrastructure. However, the large delays and Doppler shifts over the satellite channel pose severe technical challenges to a traditional LTE system. In this paper, two architectures are proposed for a LEO megaconstellation realizing a satellite-enabled LTE system, in which the on-ground LTE entity is either an eNB (Sat-eNB) or a Relay Node (Sat-RN). Focusing on the latter, the impact of large delays and Doppler shifts on LTE PHY/MAC procedures is discussed and assessed. It will be shown that, while carrier spacings, Random Access, and RN attach procedures do not pose specific issues, HARQ requires substantial modifications. Moreover, advanced handover procedures will be also required due to the satellites' movement.
This paper addresses the joint design of MIMO precoding and decoding matrices for filter bank multicarrier (FBMC) systems based on OQAM, known as FBMC/OQAM. Existing solutions that support multi-stream transmission only give satisfactory performance in scenarios with high coherence bandwidth channels. By contrast, the schemes that do not make any assumptions about the flatness of the channel do not allow the allocation of multiple streams per-subband. To make progress towards the application of FBMC/OQAM to MIMO channels, we study the design of novel solutions that could simultaneously provide robustness against the channel frequency selectivity and support multi-stream transmission. To this end, two techniques have been devised under the criterion of minimizing the sum mean square error. The non-circular nature of the OQAM symbols has not been ignored, making evident the convenience of performing a widely linear processing. The first technique keeps the complexity at a reasonable level, which is practical from the implementation point of view as it is not iterative, but in exchange the original problem is relaxed yielding a suboptimal solution. With the objective of performing closer to the optimum solution, the second option iteratively computes precoders and equalizers by resorting to an alternating optimization method, which is much more complex. We have demonstrated via simulations that the first technique nearly achieves the same results as the iterative design. Simulation results show that the proposed lowcomplexity solution outperforms existing MIMO-FBMC/OQAM schemes in terms of bit error rate (BER). As for the comparison with OFDM, the numerical results highlight that FBMC/OQAM remains competitive, with and without perfect channel state information, while it provides spectral efficiency gains. Under highly frequency selective channels the proposed technique significantly outperforms OFDM.
The adoption of aggressive frequency reuse schemes along with interference management techniques has become the leading paradigm in satellite communications to increase the spectral efficiency. In general terms, one cannot rely on precoding techniques in the absence of channel phase information. Nevertheless, the availability of channel magnitude information, makes it possible to explore power-based separation of superimposed signals. In this paper, rate splitting (RS) ideas are exploited, whereby the separation of messages into private and public parts serves to improve the performance of successive cancellation decoding (SCD). Numerical results reveal that in some pertinent system scenarios, the proposed schemes achieve a larger rate region than that of orthogonal schemes that do not exploit the interference and other strategies that either do not allow beam cooperation or do not apply RS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.