Background and Purpose— It is unknown whether white matter lesions (WML) develop abruptly in previously normal brain areas, or whether tissue changes are already present before WML become apparent on MRI. We therefore investigated whether development of WML is preceded by quantifiable changes in normal-appearing white matter (NAWM). Methods— In 689 participants from the general population (mean age 67 years), we performed 2 MRI scans (including diffusion tensor imaging and Fluid Attenuation Inversion Recovery [FLAIR] sequences) 3.5 years apart using the same 1.5-T scanner. Using automated tissue segmentation, we identified NAWM at baseline. We assessed which NAWM regions converted into WML during follow-up and differentiated new WML into regions of WML growth and de novo WML. Fractional anisotropy, mean diffusivity, and FLAIR intensity of regions converting to WML and regions of persistent NAWM were compared using 3 approaches: a whole-brain analysis, a regionally matched approach, and a voxel-wise approach. Results— All 3 approaches showed that low fractional anisotropy, high mean diffusivity, and relatively high FLAIR intensity at baseline were associated with WML development during follow-up. Compared with persistent NAWM regions, NAWM regions converting to WML had significantly lower fractional anisotropy (0.337 vs 0.387; P <0.001), higher mean diffusivity (0.910×10 –3 mm 2 /s vs 0.729×10 –3 mm 2 /s; P <0.001), and relatively higher normalized FLAIR intensity (1.233 vs –0.340; P <0.001). This applied to both NAWM developing into growing and de novo WML. Conclusions— White matter changes in NAWM are present and can be quantified on diffusion tensor imaging and FLAIR before WML develop. This suggests that WML develop gradually, and that visually appreciable WML are only the tip of the iceberg of white matter pathology.
Microstructure of white matter tracts changes with age, and may mark neurodegeneration more sensitively than white matter lesion load and atrophy. Cardiovascular factors relate to loss in microstructural organization.
Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.