The paper presents authors’ contribution to the improvement of the manufacturing technique of foam glass using the microwave energy. Due to the physical and mechanical characteristics, this material, obtained by the sintering process of waste glass at high temperature, constitutes a viable replacer of existing similar materials, used especially in construction. Unlike the conventional heating methods used worldwide, the company Daily Sourcing & Research SRL Bucharest tested lately microwave heating techniques in the manufacturing process of foam glass. In the paper it is presented an original method based on the feature of the powder mixture composed by waste glass (over 97 wt.%) and the foaming agent (calcium carbonate) to absorb the microwave energy and convert it to heat since the ambient temperature, using a silicon carbide and silicon nitride (80/ 20 weight ratio) crucible with thin wall (2.5 mm), which allows both a preponderantly direct heating and partially an indirect heating of the material. The main parameters of the process (specific consumption of energy, heating speed, process temperature and duration) were significant improved compared to the previous experiments.
<p>Experimental results obtained in the process of manufacturing dense glass foam using the microwave energy are presented in the work. The glass foam is produced from bottle glass waste, calcium carbonate as foaming agent and borax as fluxing agent. The high compressive strength (2.5 - 6.2 MPa) is the main mechanical feature of this product, which together with other physical and morphological features (apparent density 0.60 – 0.90 g/cm<sup>3</sup>, porosity 59.1 – 72.7%, thermal conductivity 0.081 – 0.105 W m K, water absorption 0.5 – 1.0%, pore size 0.5 – 3 mm), are appropriate for using as a substitute for similar building materials existing on the market.</p>
The paper presents an unconventional technique for manufacturing foam glass gravel. The numerous experimental results obtained by the authors in the last year using various manufacturing recipes common in the world industrial production by conventional techniques were selected and subjected to a qualitative and energy efficiency comparative analysis, aiming to determine the best foam glass gravel manufacturing procedure under the conditions of the use of the microwave energy. The optimum recipe was composed of 83% glass waste, 1 % glycerol, 8 % sodium silicate and 8 % water. The maximum heating temperature reached 823 ºC with a very economical energy consumption of 0.88 kWh/kg. The sample characteristics were apparent density-0.24 g/cm3, porosity-89.1% with pore size between 0.3 - 0.6 mm, thermal conductivity-0.063 W/m·K and compressive strength - 5.9 MPa, almost similar to those industrially obtained.
In the work experimental results on the manufacture of glass foam with high mechanical strength from glass waste are presented. By replacing the usual conventional energy source with a nonconventional energy (electromagnetic waves) the heating efficiency allows a fast and economical manufacturing process. Calcium carbonate as a foaming agent and an addition of sodium silicate (aqueous solution) as a binder were used. By their physico-mechanical and morphological features (0.40-0.66 g/ cm<sup>3 </sup>the apparent density, 0.054-0113 W/ m·K the thermal conductivity, 2.2-6.3 MPa the compressive strength, below 1.2 % the water absorption and under 2 mm the pore size), the foams are appropriate for their use as replacer of existing similar building materials on the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.