A spinal cord injury (SCI) is one of the most devastating lesions, as it can damage the continuity and conductivity of the central nervous system, resulting in complex pathophysiology. Encouraged by the advances in nanotechnology, stem cell biology, and materials science, researchers have proposed various interdisciplinary approaches for spinal cord regeneration. In this respect, the present review aims to explore the most recent developments in SCI treatment and spinal cord repair. Specifically, it briefly describes the characteristics of SCIs, followed by an extensive discussion on newly developed nanocarriers (e.g., metal-based, polymer-based, liposomes) for spinal cord delivery, relevant biomolecules (e.g., growth factors, exosomes) for SCI treatment, innovative cell therapies, and novel natural and synthetic biomaterial scaffolds for spinal cord regeneration.
Three-dimensional printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. Nowadays, 3D printing is very well integrated in the surgical practice and research. Also, the field of head and neck reconstructive surgery is constantly evolving because of the three-dimensional printing, a technology which can be widely used in a variety of situations such as reconstruction of tissue defects, surgical planning, medical modeling and prosthesis. By using 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients and will also provide a rapid production of personalized patient-specific devices. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otorhinolaryngology.
Glioblastoma (GB) is the most aggressive and recurrent form of brain cancer in adults. We hypothesized that the identification of biomarkers such as certain microRNAs (miRNAs) and the circulating microvesicles (MVs) that transport them could be key to establishing GB progression, recurrence and therapeutic response. For this purpose, circulating MVs were isolated from the plasma of GB patients (before and after surgery) and of healthy subjects and characterized by flow cytometry. OpenArray profiling and the individual quantification of selected miRNAs in plasma and MVs was performed, followed by target genes’ prediction and in silico survival analysis. It was found that MVs’ parameters (number, EGFRvIII and EpCAM) decreased after the surgical resection of GB tumors, but the inter-patient variability was high. The expression of miR-106b-5p, miR-486-3p, miR-766-3p and miR-30d-5p in GB patients’ MVs was restored to control-like levels after surgery: miR-106b-5p, miR-486-3p and miR-766-3p were upregulated, while miR-30d-5p levels were downregulated after surgical resection. MiR-625-5p was only identified in MVs isolated from GB patients before surgery and was not detected in plasma. Target prediction and pathway analysis showed that the selected miRNAs regulate genes involved in cancer pathways, including glioma. In conclusion, miR-625-5p shows potential as a biomarker for GB regression or recurrence, but further in-depth studies are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.