For the first time, a metal-mediated base pair has been used to modulate the affinity of an aptamer towards its target. In particular, two artificial imidazole 2’-deoxyribonucleosides (Im) were incorporated into various positions of an established ATP-binding aptamer (ATP, adenosine triphosphate), resulting in the formation of three aptamer derivatives bearing Im:Im mispairs with a reduced ATP affinity. A fluorescence spectroscopy assay and a binding assay with immobilized ATP were used to evaluate the aptamer derivatives. Upon the addition of one Ag(I) ion per mispair, stabilizing Im–Ag(I)–Im base pairs were formed. As a result, the affinity of the aptamer derivative towards ATP is restored again. The silver(I)-mediated base-pair formation was particularly suitable to modulate the aptamer function when the Im:Im mispairs (and hence the resulting metal-mediated base pairs) were located close to the ATP-binding pocket of the aptamer. Being able to trigger the aptamer function opens new possibilities for applications of oligonucleotides.
Two aptamers, one for ATP and one for arginine, were modified using an artificial 2'-dexoyribonucleoside based on the nucleobase surrogate imidazole-4-carboxylate. This synthetic nucleoside substitute does not engage in hydrogen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.